The gravitational pull of the Sun the interstellar dust attracting heat away from the protosun the process of nuclear fusion the nebular cloud condensing.
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
Answer:
(a): 
(b): 
(c): 
Explanation:
Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053
m.
Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges
and
respectively is given by

where,
= Coulomb's constant = 
= distance of separation between the charges.
For the given system,
The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, 
The charge on the electron, 
These two are separated by the distance, 
Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

Part (b):
The gravitational force of attraction between two objects of masses
and
respectively is given by

where,
= Universal Gravitational constant = 
= distance of separation between the masses.
For the given system,
The mass of proton, 
The mass of the electron, 
Distance between the two, 
Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

The ratio
:

Answer:
(a) The force between them quadruples
Explanation:
According to coulomb's law, initial force between the two charged objects is given as;

where;
k is coulomb's constant
q₁ is the charge on the first object
q₂ is the charge on the second object
r is the distance between the two objects
When the charges on both objects are doubled, then;
q₁ = 2q₁
q₂ = 2q₂
Force between the two charged objects will become

Therefore, the force between them quadruples
Answer:
(a) 10 m/s
(b) 22.4 m/s
Explanation:
(a) Draw a free body diagram of the car when it is at the top of the loop. There are two forces: weight force mg pulling down, and normal force N pushing down.
Sum of forces in the centripetal direction (towards the center):
∑F = ma
mg + N = mv²/r
At minimum speed, the normal force is 0.
mg = mv²/r
g = v²/r
v = √(gr)
v = √(10 m/s² × 10.0 m)
v = 10 m/s
(b) Energy is conserved.
Initial kinetic energy + initial potential energy = final kinetic energy
½ mv₀² + mgh = ½ mv²
v₀² + 2gh = v²
(10 m/s)² + 2 (10 m/s²) (20.0 m) = v²
v = 22.4 m/s