Answer:
the pH of HCOOH solution is 2.33
Explanation:
The ionization equation for the given acid is written as:

Let's say the initial concentration of the acid is c and the change in concentration x.
Then, equilibrium concentration of acid = (c-x)
and the equilibrium concentration for each of the product would be x
Equilibrium expression for the above equation would be:
![\Ka= \frac{[H^+][HCOO^-]}{[HCOOH]}](https://tex.z-dn.net/?f=%5CKa%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BHCOO%5E-%5D%7D%7B%5BHCOOH%5D%7D)

From given info, equilibrium concentration of the acid is 0.12
So, (c-x) = 0.12
hence,

Let's solve this for x. Multiply both sides by 0.12

taking square root to both sides:

Now, we have got the concentration of ![[H^+] .](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20.)
![[H^+] = 0.00465 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%200.00465%20M)
We know that, ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
pH = -log(0.00465)
pH = 2.33
Hence, the pH of HCOOH solution is 2.33.
<span>20%. By forming an iceglaze over the surfaces, freezing precipitation accounts for 20% of all winter weather related injuries in the United States. When the freezing precipitation leads to accumulation of 0.25 inch ice, it is known as Ice storm.</span>
Strontium has an electron configuration of [Kr]5s²
<h3>Further explanation </h3>
In an atom there are levels of energy in the shell and sub shell
This energy level is expressed in the form of electron configurations.
Writing electron configurations starts from the lowest to the highest sub-shell energy level. There are 4 sub-shells in the shell of an atom, namely s, p, d and f. The maximum number of electrons for each sub shell is
s: 2 electrons
p: 6 electrons
d: 10 electrons and
f: 14 electrons
From an electron configuration of [Kr]5s² can be concluded :
- element is in period 5 (5 = shell)
- element is group 2(valence electron =2 and block s)
- has atomic number 38 (Kr = 36 + 2(valence elektron from 5s²)
If we look at the periodic system, the elements that meet the requirements in question are Strontium (Sr)