Answer:
a) ΔGº= -49,9 KJ/mol = - 50 KJ/mol
b) The reaction goes to the right to formation of products
c) ΔG= 84,42 KJ/mol. The direction is to reactive, to the left
Explanation:
a) ΔGº= - RTLnKf
You need to convert Cº to K. 25ºC=298K
Then, ΔGº= - 3,814 J/molK * 298K* Ln(5.6 *10^8)= - 49906 J/mol = -49,9 KJ/mol = - 50 KJ/mol
b) The ΔGº < 0, that means the direct reaction is spontaneous when te reactive and products are in standard state. In other words the reaction goes to the right, to formation of products
c) The general ecuation for chemical reaction is aA + bB → cD + dD. Thus
ΔG=ΔGº + RTLn (([C]^c*[D]^d)/[A]^a*[B]^b)
In this case,
ΔG=ΔGº + RTLn ([Ni(NH3)62+] / [Ni2+]*[NH3]^6 )= 84417 J/mol =84,42 KJ/mol
ΔG >0 means the reaction isn't spontaneous in the direction of the products. Therefore the direction is to reactive, to the left
Answer:
2.94 * (10^6) minutes = 291.666667 weeks
Explanation:
I believe it’s a positive charge
The correct answer is 221.06 °C hot.
If P₁ is the pressure at T₁ and P₂ is the pressure at T₂ then,
P₁/T₁ = P₂/T₂
It is given that P₁ = 2.38 atm
T₁ = 15.2 degree C = 273 + 15.2 = 288.2 K
P₂ = 4.08 atm
T₂ = x
Thus, 2.38 / 288.2 = 4.08 / x
x = (4.08 × 288.2) / 2.38
x = 494.06 K
x = 494.06 - 273 °C = 221.06 °C
Therefore, the tire would get 221.06 °C hot.