Answer:
9.6 mol AgCl2
Explanation:
You have to use Avogadro's number: 6.023 x 10^23
5.78 x 10^24 molecules (1 mol AgCl2/ 6.023 x 10^23 molecules) =9.6 mol AgCl2
This is called drawing conclusions as once they are done w research, they can comprehend the subject in order to predict what may happen under the circumstances.
Answer:
1.209g of MgO participates
Explanation:
In this problem, we have 0.030 moles of MgO that participates in a particular reaction.
And we are asked to solve for the mass of MgO that participates, that means, we need to convert moles to grams.
To convert moles to grams we need to use molar mass of the compound:
<em>1 atom of Mg has a molar mass of 24.3g/mol</em>
<em>1 atom of O has a molar mass of 16g/mol</em>
<em />
That means molar mass of MgO is 24.3g/mol + 16g/mol = 40.3g/mol
And mass of 0.030 moles of MgO is:
0.030 moles MgO * (40.3g/mol) =
<h3>1.209g of MgO participates</h3>
Answer:
B) 0.32 %
Explanation:
Given that:

Concentration = 1.8 M
Considering the ICE table for the dissociation of acid as:-

The expression for dissociation constant of acid is:
![K_{a}=\frac {\left [ H^{+} \right ]\left [ {CH_3COO}^- \right ]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20H%5E%7B%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20%7BCH_3COO%7D%5E-%20%5Cright%20%5D%7D%7B%5BCH_3COOH%5D%7D)


Solving for x, we get:
<u>x = 0.00568 M</u>
Percentage ionization = 
<u>Option B is correct.</u>
In large doses it stops cells using oxygen causing these cells to die. So in a small amount it would not kill you. So lets say cyanide is inside the body it would kill off all the cells and your body would not be able to function causing death