Answer:
The <u>equilibrium constant</u> is:
Explanation:
The correct equation is:
Thus, with the equilibrium concentrations you can calculate the equilibrium constant, Kc.
The equation for the equilibrium constant is:
Substituting:
Answer:
<em>Protons:
</em>
- Positively charged particle
- The number of these is the atomic number
- All atoms of a given element have the same number of these
<em>Neutrons: </em>
- Isotopes of a given element differ in the number of these
- The mass number is the number of these added to the number of protons
Explanation:
Protons (<em>positively charged</em>), neutrons (<em>neutral</em>) and electrons (negatively charged) are smaller than an atom and they are the main subatomic particles. The nucleus of an atom is composed of protons and neutrons, and the electrons are in the periphery at unknown pathways.
The <em>Atomic number</em> (Z) indicates the number of protons () in the nucleus. Every atom of an element have the <em>same atomic number</em>, thus the <em>same number of protons</em>.
The <em>mass number </em>(A) is the sum of the <em>number of protons</em> () <em>and neutrons</em> (N) that are present in the nucleus: <em>A= Z + N</em>
<em>Isotopes</em> are atoms of the <em>same element </em>which nucleus have the <em>same atomic number</em> (Z), and <em>different mass number (A)</em>, it means the <em>same number of protons</em> () and a <em>different number of neutrons</em> (N). For example, the oxygen in its natural state is a mixture of isotopes:
99.8% atoms with A= 16, Z=8, and N=8
0.037% atoms with A=17, Z=8, and N=9
0.204% atoms with A=18, Z=8, and N=10
<span>the one that is not a factor that contribute to natural selection is : Population stability
population refer to the capability of a community to maintain its total amount of organisms within a specific period of time.
This has nothing to do with natural selection, which basically a nature's way to reduce the number of organism to findout which organisms are more adaptive</span>
Answer:
C) sp2 and sp2
Explanation:
The hybridization depens on the ammount and type of bonds the atom analized has in the molecule.
For example:
- A C atom bonded to 4 H atoms has a sp3 hybridization.
- A C atom bonded to 2 H atoms and to 1 C with a double bond (like in ethene) has a sp2 hybridization
- A C bonded to 1 H and 1 C with a triple bond (like in ethyne) has a sp hybridization.
Analyzing the type and amount of unions of the nitrogen and the carbonyl you will be able to determine the hybridization.
In the imine, the N atom has a double bond to a C and a simple bond two other C, plus the lone pair of electrons (counts as a bond) so it will have a sp2 hybridization.
In the carbonyl, the C has two simple bonds to other C and a double bond to an oxygen atom. It will also have a sp2 hybridization