For the first part, use the question M=mol/vol (liters)
To do this, you have the given 1.6 M solution
divide the 360g by the molar mass of ethanol (44.07) to get moles
360/44.07=8.16 mol
so
1.6M = 8.16 mol/x vol
volume: 5.1 Liters
Like this? 234+34.1= 268.1 then round. If it is less than 5 then you round down if it is more then you round up. Because it is less the final number would be 268.1=268
Answer:
41.9 g
Explanation:
We can calculate the heat released by the water and the heat absorbed by the steel rod using the following expression.
Q = c × m × ΔT
where,
c: specific heat capacity
m: mass
ΔT: change in temperature
If we consider the density of water is 1.00 g/mol, the mass of water is 125 g.
According to the law of conservation of energy, the sum of the heat released by the water (Qw) and the heat absorbed by the steel (Qs) is zero.
Qw + Qs = 0
Qw = -Qs
cw × mw × ΔTw = -cs × ms × ΔTs
(4.18 J/g.°C) × 125 g × (21.30°C-22.00°C) = -(0.452J/g.°C) × ms × (21.30°C-2.00°C)
ms = 41.9 g
The Kinitec Molecular Theory of Matter
Yes Kninetic energy
Answer:
10425 J are required
Explanation:
assuming that the water is entirely at liquid state at the beginning , the amount required is
Q= m*c*(T final - T initial)
where
m= mass of water = 25 g
T final = final temperature of water = 100°C
T initial= initial temperature of water = 0°C
c= specific heat capacities of water = 1 cal /g°C= 4.186 J/g°C ( we assume that is constant during the entire temperature range)
Q= heat required
therefore
Q= m*c*(T final - T initial)= 25 g * 4.186 J/g°C * (100°C- 0°C) = 10425 J
thus 10425 J are required