Answer:
Volume of the sample: approximately
.
Average density of the sample: approximately
.
Assumption:
.
.- Volume of the cord is negligible.
Explanation:
<h3>Total volume of the sample</h3>
The size of the buoyant force is equal to
.
That's also equal to the weight (weight,
) of water that the object displaces. To find the mass of water displaced from its weight, divide weight with
.
.
Assume that the density of water is
. To the volume of water displaced from its mass, divide mass with density
.
.
Assume that the volume of the cord is negligible. Since the sample is fully-immersed in water, its volume should be the same as the volume of water it displaces.
.
<h3>Average Density of the sample</h3>
Average density is equal to mass over volume.
To find the mass of the sample from its weight, divide with
.
.
The volume of the sample is found in the previous part.
Divide mass with volume to find the average density.
.
As we know that in order to melt the copper we need to take the temperature of copper to its melting point
So here heat required to raise the temperature of copper is given as

We know that
melting temperature of copper = 1085 degree C
Specific heat capacity of copper = 385 J/kg C
now we have



now in order to melt the copper we know the heat required is

here we know that
L = 205 kJ/kg
now from above formula


now total heat required will be


As we know that

now we have

Pitch is way to relate a sound to its frequency. High frequencies have high pitches (think of a flute), and low frequencies have low pitches (think of a bass). <span>
</span>
The planets revolving around the sun, The moon revolving around the Earth.
The latent heat of fusion refers to the solid to liquid or liquid to solid states.
Answer: Option C
<u>Explanation:
</u>
It is known that the inter conversion process from the states of solid to liquid is referred as fusion. So, for these conversions, the external energy in the heat form should be supplied to solid.
This external energy should be greater than the latent heat of solid in order to successfully break the bonds to form liquid. So the change in the enthalpy of the reaction while conversion from solids to liquids are termed as latent heats of fusion.
Even the inter-conversion from liquid to solid state will undergo change in enthalpy where the heat will be released and that is termed as latent heats of solidification. It is found that latent heat of solidification is equal in magnitude but opposite in direction with the latent heats of fusion.