Assume that the deceleration due to braking is a ft/s².
Note that
40 mph = (40/60)*88 = 58.667 ft/s
25 mph = (25/60)*88 = 36.667 ft/s
The final velocity is zero when the car stops, therefore
v² - 2ad = 0, or d = v²/(2a)
where
v = initial speed
a = deceleration
d = stopping distance.
The stopping distance, d₄₀, at 40 mph is
d₄₀ = 58.667²/(2a)
The stopping distance, d₂₅, at 25 mph is
d₂₅ = 36.667²/(2a)
Therefore
d₄₀/d₂₅ = 58.667²/(2a) ÷ 36.667²/(2a)
= (58.667/36.667)²
= 2.56
Answer:
The stopping distance at 40 mph is 2.56 times the stopping distance at 25 mph.
Answer: well we all orbit the sun all the planets do so the
SuN
Explanation: two words common sense
Hi there!
Recall the equation for spring potential energy:

k = Spring constant (N/m)
x = extension of spring from equilibrium (m)
PE = Potential Energy (J)
Plug in the given values:

The seasons affect the scheduling of far more events the moon phases do.