Given data
*The given 4th harmonic frequency is 31.5 Hz
The fundamental frequency is calculated as

Hence, the fundamental frequency is 7.875 Hz
B - speed and direction are combined in another quantity, called velocity. It can be thought of as its speed in a particular direction. Speed is the corresponding scalar quantity, because it does not have a direction.
We have,
- Jane mass is 55 kg
- His body covered with 700 nails all of them having a surface area of 1.00 mm² each = 700 × 1 = 700 mm² = 700/1000000 = 7/10000
We know that,
Let's calculate force as we already have area;
- F = ma
- F = 55 × 9.8 { Acceleration due to gravity }
- F = 539 N
Now, if should she would be on 700 nails then pressure will be;
- P = F/A
- P = 539/7 × 10000
- P = 5390000/7
- P = 770,000 Pascal
And if should would be on a 1 nail only,
- P = F/A
- P = 539/1 × 1000000
- P = 539000000 Pascal
<u>A</u><u>s</u><u>,</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>n</u><u>o</u><u>t</u><u>i</u><u>c</u><u>e</u><u> </u><u>y</u><u>o</u><u>u</u><u>r</u><u>s</u><u>e</u><u>l</u><u>f</u><u> </u><u>t</u><u>h</u><u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>p</u><u>r</u><u>e</u><u>s</u><u>s</u><u>u</u><u>r</u><u>e</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>b</u><u>e</u><u> </u><u>s</u><u>o</u><u> </u><u>h</u><u>i</u><u>g</u><u>h</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>o</u><u>n</u><u>l</u><u>y</u><u> </u><u>1</u><u> </u><u>n</u><u>a</u><u>i</u><u>l</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>b</u><u>e</u><u>c</u><u>a</u><u>u</u><u>s</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>i</u><u>s</u><u>,</u><u> </u><u>n</u><u>a</u><u>i</u><u>l</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>p</u><u>a</u><u>s</u><u>s</u><u> </u><u>through</u><u> </u><u>j</u><u>a</u><u>n</u><u>e</u><u>'</u><u>s</u><u> </u><u>b</u><u>o</u><u>d</u><u>y</u><u>.</u>
Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight