Answer:
chris gets 960 and molly gets 1440
Explanation:
add the ratio up and divide
2+3=5
2400/5=480
480x2=960
480x3=1440
960+1440= 2400
The answer to this question to A. The other choices are positive.
Answer:
The mass flow rate is 2.37*10^-4kg/s
The exit velocity is 34.3m/s
The total flow of energy is 0.583 KJ/KgThe rate at which energy leave the cooker is 0.638KW
<u></u>
Answer:
1) not so long (maybe an hour or two)
2) access to information through the internet will be most affected if my computer and mobile phone run out of battery power.
3) yes, one should prepare for power outage. This can be done by having a standby alternative source of power like the use of inverters that stores electrical energy in form of chemical energy, and small internal combustion engine powered electric generators.
4) solar panels can be used to draw power from incident sun rays, this power can be stored in an inverter for future use in case of a power outage.
5) energy from the sun is converted into direct current which is then supplied to an accumulator in the opposite direction to its flow of current. When the energy is needed, it can be used directly, or converted to an alternating current. This is achieved by connecting its terminal to the supply. Electric field is generated by flow of ions and electrons within the working chemical (e.g lithium).
Explanation:
This type of a problem can be solved by considering energy transformations. Initially, the spring is compressed, thus having stored something called an elastic potential energy. This energy is proportional to the square of the spring displacement d from its normal (neutral position) and the spring constant k:

So, this spring is storing almost 12 Joules of potential energy. This energy is ready to be transformed into the kinetic energy when the masses are released. There are two 0.2kg masses that will be moving away from each other, their total kinetic energy after the release equaling the elastic energy prior to the release (no losses, since there is no friction to be reckoned with).
The kinetic energy of a mass m moving with a velocity v is given by:

And we know that the energies are conserved, so the two kinetic energies will equal the elastic potential one:

From this we can determine the speed of the mass:

The speed will be 7.74m/s in in one direction (+), and same magnitude in the opposite direction (-).