It is E=something which leases another something equaling another something
Answer:
Option 5. 1 and 3
Solution:
The only forces acting on the tennis ball after it has left contact with the racquet and the instant before it touches the ground are the force of gravity in the downward direction and the force by the air exerted on the ball.
The ball after it left follows the path of trajectory and as it moves forward in the horizontal direction the force of the air acts on it.
In the whole projectile motion of the ball, the acceleration due to gravity acts on the ball thus the force of gravity acts on the ball in the downward direction before it hits the ground.
In comparison to a distribution with a standard deviation of 5, one has a curve with a higher peak. The variability will be greater the larger the standard deviation. It denotes increased variability in a distribution with a standard deviation of 5.
<h3>What do you mean by the term standard deviation?</h3>
The term "standard deviation" (or "") refers to a measurement of the data's dispersion from the mean. A low standard deviation implies that the data are grouped around the mean, whereas a large standard deviation shows that the data are more dispersed. In contrast, a high or low standard deviation indicates that the data points are, respectively, above or below the mean. A standard deviation that is close to zero implies that the data points are close to the mean. the curve at the top is more dispersed and has a greater standard deviation than the curve at the bottom, which is more concentrated around the mean and has a lower standard deviation.
To learn more about standard deviation, Visit:
brainly.com/question/14650840
#SPJ4
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.