Answer:
28716.4740661 N
1.2131147541 m/s
51.2474965841%
Explanation:
m = Mass of plane = 74000 kg
s = Displacement = 3.7 m
f = Frictional force = 14000 N
t = Time taken = 6.1 s
u = Initial velocity = 0
v = Final velocity

Force is given by

The force with which the team pulls the plane is 28716.4740661 N

The speed of the plane is 1.2131147541 m/s
Kinetic energy is given by

Work done is given by

The fraction is given by

The teams 51.2474965841% of the work goes to kinetic energy of the plane.
The value of parameter C for the function in the figure is 2.
<h3>What is amplitude of a wave?</h3>
The amplitude of a wave is the maximum displacement of the wave. It can also be described at the maximum upward displacement of a wave curve.
f(x) = Acos(x - C)
where;
- A is amplitude of the wave
- C is phase difference of the wave
<h3>What is angular frequency of a wave?</h3>
Angular frequency is the angular displacement of any element of the wave per unit time.
From the blue colored graph; at y = 1, x = -2 cm
1 = cos(2 - C)
(2 - C) = cos^(1)
(2 - C) = 0
C = 2
Thus, the value of parameter C for the function in the figure is 2.
Learn more about phase angle here: brainly.com/question/16222725
#SPJ1
To solve this problem it is necessary to apply the concepts related to the concept of overlap and constructive interference.
For this purpose we have that the constructive interference in waves can be expressed under the function

Where
a = Width of the slit
d = Distance of slit to screen
m = Number of order which represent the number of repetition of the spectrum
Angle between incident rays and scatter planes
At the same time the distance on the screen from the central point, would be

Where y = Represents the distance on the screen from the central point
PART A ) From the previous equation if we arrange to find the angle we have that



PART B) Equation both equations we have


Re-arrange to find a,


Answer:
no where is the main part of the question dude