Hey there!
The elements in this equation are K, N, O, H, and C.
Let's count how many of each are on each side to see if it is balanced.
K: 2 on the left, 2 on the right.
<em>N: 2 on the left, 4 on the right. </em>
<em>O: 9 on the left, 6 on the right. </em>
<em>H: 2 on the left, 4 on the right. </em>
C: 1 on the left, 1 on the right.
Notice that there are different amounts of N, O, and H on the left side and the right side.
This means that the equation is not balanced.
Hope this helps!
The heat released by the substance in the calorimeter is equal to the heat absorbed by water which results to the decrease and increase in temperature, respectively.
We use m Cp ΔT to balance the heat involved
(m Cp ΔT) subs in calorimeter = <span>(m Cp ΔT) water
</span>125 g * Cp * (97.0-23.5 ) C = 250 g *(4.18 J/C g)* (23.5-20)
Cp = 0.398 J/Cg
Answer is B
Answer:
[Na₂CO₃] = 0.094M
Explanation:
Based on the reaction:
HCO₃⁻(aq) + H₂O(l) ↔ CO₃²⁻(aq) + H₃O⁺(aq)
It is possible to find pH using Henderson-Hasselbalch formula:
pH = pka + log₁₀ [A⁻] / [HA]
Where [A⁻] is concentration of conjugate base, [CO₃²⁻] = [Na₂CO₃] and [HA] is concentration of weak acid, [NaHCO₃] = 0.20M.
pH is desire pH and pKa (<em>10.00</em>) is -log pka = -log 4.7x10⁻¹¹ = <em>10.33</em>
<em />
Replacing these values:
10.00 = 10.33 + log₁₀ [Na₂CO₃] / [0.20]
<em> [Na₂CO₃] = 0.094M</em>
<em />