Mole of electron required by
mole is 
- Faraday law expressed how the change that is been being produced by a current at an electrode-electrolyte interface is related and proportional to the quantity of electricity that is been used.
- There is one mole of electron required for 1 Faraday of electricity.
- Avogadro constant is

- Mole of electron can be calculated by dividing the number of electron by avogadro's constant.
=
= 
Therefore, it requires
Faraday of electricity for the 
Learn more at: brainly.com/question/1640558?referrer=searchResults
Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Answer: It is called a Crookes Tube, and he used it to discover cathode rays, which were later determined to be electrons.
Answer:
carbon and silicon
Explanation:
Various groups of elements in the periodic table have different outermost shell electron configurations. Actually, elements are classified into groups on the basis of the number of electrons on the outermost shell of those elements. All elements with the same number of electrons on their outermost shell belong to the same group in the periodic table.
For elements in group 14, they all have four electrons on their outermost shell. Their general outer electron configuration is ns2 np2 as shown in the question. Two prominent members of this group are carbon and silicon. This ns2 np2 is the ground state outer electron configuration of all group 14 elements in the periodic table.
PV / T = P'V' / T'
V = V'
P / T = P' / T'
P = 630 mmHg
T = 100 K
P' = 1760 mmHg
T' = ?
630 / 100 = 1760 / T'
T' = 1760 / 6,3
T' = 279,36 K
T' ≈ 280 K