When magnesium is burned, it reacts with oxygen in air not with the fire. The fire is the energy needed for the reaction to happen. Magnesium reacts with oxygen forming magnesium oxide. The light emitted from the reaction is because the reaction produced a lot of heat.
Answer:
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjkwv-cqrjnAhVCheAKHWaFBBgQFjAAegQICBAB&url=https%3A%2F%2Fwww.acs.org%2Fcontent%2Fdam%2Facsorg%2Feducation%2Fresources%2Fk-8%2Finquiryinaction%2Fstudent-activity-sheets%2Fgrade-5%2Fchapter-3%2Flesson-3.3-forming-a-precipitate.pdf&usg=AOvVaw1fT7fpXG9PNWroM87puvgQ
Explanation:
that has the answers copy and paste it in your google
Answer: The pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 205 kPa
= final pressure of gas = ?
= initial volume of gas = 4.0 L
= final volume of gas = 12000 ml = 12 L (1L=1000ml)
(1kPa=0.0098atm)
Therefore, the pressure in atmospheres is 0.674 in the container if the temperature remains constant.
The particles cannot move around at all. The particles are, however, still in motion.