Answer:
Coconut oil, Olive oil and Sunflower oil
Explanation:
Fatty acids are carboxylic acids with a long unbranched chain of carbon and hydrogen atoms.
There are three main classes of fatty acids which are explained as under:
1. Saturated Fatty acids: These fatty acids have long carbon chain with two hydrogen atoms bonded to each carbon atom. This saturation of fatty acids make the fatty acids more stable towards high temperature. These fatty acids becomes solid at room temperature. Coconut oil and butter are the examples of saturated fatty acids.
2. Monounsaturated Fatty Acids: In a long carbon chain, if there is a carbon atom which is double bonded with another carbon atom and rest is saturated with hydrogen atoms, because of this single double-bond, the fatty acid is termed as monounsaturated fatty acids. These fatty acids are liquid at room temperature but solidify in refrigerator. Olive oil is an example of such fatty acids.
3. Polyunsaturated Fatty Acids: In a long carbon chain, if there are two or more than two carbon atoms which are double bonded with each other and rest is saturated with hydrogen atoms, because of multiple double bonds, such fatty acids are termed as polyunsaturated fatty acids. Because of higher unsaturation, these fatty acids are liquid in both normal room temperature and in refrigerator. Such unsaturation also make them unfit for cooking purposes. Sunflower oil, Soyabean oil and Flaxseed oil are examples of polyunsaturated fatty acids.
Answer: Option (d) is the correct answer.
Explanation:
In water cycle, water from clouds fall in the form of rain, snow etc. This water travels through the surface of mountains and passes through rivers, oceans etc and gets evaporated due to heat from Sun.
When water evaporates then it absorbs energy in the form of heat from Sun and when water condenses then heat is released.
Therefore, water gains energy during evaporation and releases it during condensation.
This it true because in the triangle of the transformation from solid, liquid, and gas
:0<span />
The rate law for this reaction is [A]².
Balanced chemical reaction used in this experiment: A + B → P
The reaction rate is the speed at which reactants are converted into products.
Comparing first and second experiment, there is no change in initial rate. The concentration of reactant B is increased by double. Initial rate does not depands on concentration of reactant B.
Comparing first and third experiment, initial rate is nine times greater, while concentration of reactant A is three times greater. Conclusion is that concentration of reactant A is squared and the rate is [A]².
More info about rate law: brainly.com/question/16981791
#SPJ4