Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Hey there! Hello!
Not sure if you still need the answer to this question, but I'd love to help out if you do.
So, the way to balance this equation is pretty simple. First, you need to keep in mind that molecules of hydrogen and oxygen do not come in single molecules, but in bonded pairs, represented by H2 and O2.

But, that's incorrect. The combination of 2 hydrogen molecules with 1 oxygen molecule yields water, but that leaves one oxygen molecule leftover. When broken down, this is how many of each molecule is on each side of the previously stated equation:
Left:
H: 2
O: 2
Right:
H: 2
O: 1
So we have to multiply H2O on the right side by 2 in order to get this:

Left:
H: 2
O: 2
Right:
H: 4
O: 2
The last step is to multiply H2 on the left by two to make it match up with the right side, balancing the equation:

Left:
H: 4
O: 2
Right:
H: 4
O: 2
That makes our equation balanced! I hope this helped you out, feel free to ask any additional questions if you need further clarification. :-)
Fe(s) + CuSO4(aq) -> Cu(s) + FeSO4(aq) is the answer if you get it in advance...
Answer: 
Explanation:
A double displacement reaction is one in which exchange of ions take place. The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.
Spectator ions are defined as the ions which does not get involved in a chemical equation or they are ions which are found on both the sides of the chemical reaction present in ionic form.
The given chemical equation is:

The complete ionic equation is:

The ions which are present on both the sides of the equation are lithium and chlorate ions. and hence are not involved in net ionic equation.
Thus the net ionic equation is:

Using the law of <span>dilution:
</span>initial Molarity = 3.5x10⁻⁶ M
<span>Initial volume = 4.00 mL
</span>
final Molarity = ??
final volume = 1.00 mL
Therefore:
Mi x Vi = Mf x Vf
(3.5x10⁻⁶) x 4.00 = Mf x 1.00
1.4x10⁻⁵ = Mf x 1.00
Mf = 1.4x10⁻⁵ / 1.00 =
1.4x10⁻⁵ M