Answer
:
2. Hydrogen forms bonds through the overlap of 1s atomic orbitals and the sharing of electrons between atoms. Carbon forms bonds through the overlapping of sp hybrid atomic orbitals and the sharing of electrons between carbon atoms.
Explanation:
The H-H bond is formed by the overlap of two 1s orbitals and the sharing of electrons between the two atoms.
A carbon atom must use the overlap of hybridized atomic orbitals and the sharing of electrons to bond with another carbon atoms.
1. is <em>wrong</em> because H can use only its <em>1s orbital</em> for bonding.
3. is <em>wrong</em> because C must <em>share electrons</em> to form a carbon-carbon bond.
4. is <em>wrong</em> because <em>C does NOT use overlapping of 2s orbitals</em> for bonding. It uses the overlap of hybridized orbitals.
5. is <em>wrong</em> because H must <em>share electrons</em> to form an H-H bond.
They work by lowering the activation energy
Answer:
2Li(s) + 2H₂O(ℓ) ⟶ 2Li⁺(aq) + 2OH⁻(aq) + H₂(g)
Explanation:
An ionic equation uses the symbols (aq) [aqueous] to indicate molecules and ions that are soluble in water, (s) [solid] to indicate insoluble solids, and (ℓ) to indicate substances (usually water) in the liquid state.
In this reaction, solid lithium reacts with liquid water to form soluble lithium hydroxide and gaseous hydrogen
.
1. Molecular equation
2Li(s) + 2H₂O(ℓ) ⟶ 2LiOH(aq) + H₂(g)
2. Ionic equation
Lithium hydroxide is a soluble ionic compound, so we write it as hydrated ions.
2Li(s) + 2H₂O(ℓ) ⟶ 2Li⁺(aq) + 2OH⁻(aq) + H₂(g)
Answer: well the receptacle connect the stalk to the flower and to support the flower and keeps the flower in an elevated position so as to attract the insects
Explanation: I don’t know if this helped
Answer:
increases
decreases
Explanation:
The distance between particles increases when the temperature increases and decreases when temperature decreases.
- Temperature changes in a system causes the particle of such system to behave in different ways.
- When particles gain heat energy as their temperature increases, they begin to move further apart.
- As their temperature reduces they tend to coalesce.