bvcdbcvfdnbgfbjdgfhdgfjghfjhvjbczdfsghdfshjdgfhdftgh
Complete Question
The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .
What eyepiece focal length will give the microscope an overall angular magnification of 300?
Answer:
The eyepiece focal length is
Explanation:
From the question we are told that
The focal length is 
This negative sign shows the the microscope is diverging light
The angular magnification is 
The distance between the objective and the eyepieces lenses is 
Generally the magnification is mathematically represented as
![m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ]](https://tex.z-dn.net/?f=m%20%20%3D%20%20%5B%5Cfrac%7BZ%20-%20f_e%20%7D%7Bf_e%7D%5D%20%5B%5Cfrac%7B0.25%7D%7Bf_0%7D%20%5D)
Where
is the eyepiece focal length of the microscope
Now making
the subject of the formula
![f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7BZ%7D%7B1%20-%20%5B%5Cfrac%7BM%20%20%2A%20%20f_o%20%7D%7B0.25%7D%5D%20%7D)
substituting values
![f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }](https://tex.z-dn.net/?f=f_e%20%20%3D%20%5Cfrac%7B%200.19%20%7D%7B1%20-%20%5B%5Cfrac%7B300%20%20%2A%20%20-0.0055%20%7D%7B0.25%7D%5D%20%7D)
To solve this problem we will apply the concepts related to the work theorem for which it is defined as the product of Force and distance. In turn, we will use the energy conservation theorem for which the applied work must be equivalent to the total kinetic energy on the body.
The work is defined as

Here,
F = Force
d = Displacement
Replacing with our values we have that


Now by conservation of energy,



Solving for v,


Therefore the correct answer is D.
You do not doubt it. The third Law of Newton really works. I would say it is the most reliable law of the Universe. Action and reaction. It is not subject to special conditions, it works always. If an object exerts a force over other object, the second object exerts a force of equal magnitude but in the opposed direction over the first.
So, the answer, undoubtedly, is that the ball exerts a force of 0.5 N over Alices's foot as she kicks it.