Total resultant velocity=5.11-3.27=1.84m/s
- m_1=61.4kg
- m_2=109kg
- v_1=1.84m/s
- v_2=?






27.9 idkkkk look it up on photomath
Answer:
The current in the circuit increases
Explanation:
The ohm's law states that the potential across a circuit is proportional to the current in the circuit.
V ∝ I
Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.
The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes
V = IR
According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.
So, when there is an increase in the voltage, the current on the circuit increases.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The total pressure is 
The temperature at the bottom is 
Explanation:
From the question we are told that
The length of the glass tube is 
The length of water rise at the bottom of the lake 
The depth of the lake is 
The air temperature is 
The atmospheric pressure is 
The density of water is 
The total pressure at the bottom of the lake is mathematically represented as

substituting values


According to ideal gas law
At the surface the glass tube not covered by water at surface

Where is the volume of

At the bottom of the lake

Where
is the volume of the glass tube not covered by water at bottom
and
i the temperature at the bottom
So the ratio between the temperature at the surface to the temperature at the bottom is mathematically represented as

substituting values

=> 
To develop the problem it is necessary to apply the concepts related to Magnetic Field.
The magnetic field is defined as

Where,
Permeability constant in free space
r = Radius
I = Current
Our values are given as,
B = 0.1T
d = 4.5mm
r = 2.25mm
If the maximum current that the wire can carry is I, then




Therefore the maximum current is 1125A