Answer:
0.5 m/s2
Explanation:
accelration formula : final velocty - starting velocity divided by time
Answer:
No
Explanation:
Cause a monster truck don
Answer:
The speed of the heavier fragment is 0.335c.
Explanation:
Given that,
Mass of the lighter fragment 
Mass of the heavier fragment 
Speed of lighter fragment = 0.893c
We need to calculate the speed of the heavier fragment
Let v is the speed of the second fragment after decay
Using conservation of relativistic momentum













Hence, The speed of the heavier fragment is 0.335c.
Answer:
L = μ₀ n r / 2I
Explanation:
This exercise we must relate several equations, let's start writing the voltage in a coil
= - L dI / dt
Let's use Faraday's law
E = - d Ф_B / dt
in the case of the coil this voltage is the same, so we can equal the two relationships
- d Ф_B / dt = - L dI / dt
The magnetic flux is the sum of the flux in each turn, if there are n turns in the coil
n d Ф_B = L dI
we can remove the differentials
n Ф_B = L I
magnetic flux is defined by
Ф_B = B . A
in this case the direction of the magnetic field is along the coil and the normal direction to the area as well, therefore the scalar product is reduced to the algebraic product
n B A = L I
the loop area is
A = π R²
we substitute
n B π R² = L I (1)
To find the magnetic field in the coil let's use Ampere's law
∫ B. ds = μ₀ I
where B is the magnetic field and s is the current circulation, in the coil the current circulates along the length of the coil
s = 2π R
we solve
B 2ππ R = μ₀ I
B = μ₀ I / 2πR
we substitute in
n ( μ₀ I / 2πR) π R² = L I
n μ₀ R / 2 = L I
L = μ₀ n r / 2I
Answer:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?
Explanation:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?