Distance is 50 km
Displacement is 10 km
<u>Explanation:</u>
Given:
Distance toward south, x = 25 km
Distance towards west, y = 10 km
Distance towards north, z = 15 km
(a) Total distance, D = ?
Total distance, D = x + y + z
D = 25 + 10 + 15
D = 50km
(b) Displacement, d = ?
Displacement = final position - initial position
= 10 - 0 km
= 10km
Explanation:
Equilibrium position in y direction:
W = Fb (Weight of the block is equal to buoyant force)
m*g = V*p*g
V under water = A*h
hence,
m = A*h*p
Using Newton 2nd Law

Hence, T time period
T = 2*pi*sqrt ( h / g )
Answer:
the terminal velocity of 14 nested coffee filters is 3.2 m/s
Explanation:
Given the data in the question;
we know that;
The terminal velocity is proportional to the square root of weight.
v ∝ √W
v = k√W
the proportionality constant depends upon the surface area and the density of the medium (like air). The coffee filters can be stacked such that the resulting area is roughly unchanged. So, the constant of proportionality k is also unchanged
v/√W = constant
v₂/√W₂ = v₁/√W₁
v₂ = v₁√(W₂ / W₁ )
given that;
v₁ = 0.856 m/s,
W₂ = 14W₁; meaning 14 coffee filters have 14 times the weight of a single coffee filter
so we substitute
v₂ = 0.856 √(14W₁ / W₁ )
v₂ = 0.856 √( 14( W₁/W₁)
v₂ = 0.856 √( 14(1)
v₂ = 0.856 √( 14 )
v₂ = 0.856 × 3.741657
v₂ = 3.2 m/s
Therefore, the terminal velocity of 14 nested coffee filters is 3.2 m/s
Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then
