1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
2 years ago
9

What happens when a magnet passes through a closed loop of wire?

Physics
1 answer:
snow_tiger [21]2 years ago
8 0

(A) an electric current is generated in the wire

Explanation :

When a close loop of wire pass through a magnetic field, an EMF is induced to the wire.

You might be interested in
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
What is a gas-like mixture that is made of charged particles?<br><br> (Physical Science)
Juli2301 [7.4K]

Answer:

I believe the answer is Plasma

7 0
3 years ago
A 70.0 kg astronaut is training for accelerations that he will experience upon reentry. He is placed in a centrifuge (r = 15.0 m
Levart [38]

Answer:

1.3823 rad/s

20.7345 m/s

28.66129935 m/s²

a=2.92164g

2006.29095 N radially outward

Explanation:

r = Radius = 15 m

m = Mass of person = 70 kg

g = Acceleration due to gravity = 9.81 m/s²

Angular velocity is given by

\omega=13.2\times \dfrac{2\pi}{60}\\\Rightarrow \omega=1.3823\ rad/s

Angular velocity is 1.3823 rad/s

Linear velocity is given by

v=r\omega\\\Rightarrow v=15\times 1.3823\\\Rightarrow v=20.7345\ m/s

The linear velocity is 20.7345 m/s

Centripetal acceleration is given by

a_c=r\omega^2\\\Rightarrow a_c=15\times 1.3823^2\\\Rightarrow a_c=28.66129935\ m/s^2

The centripetal acceleration is 28.66129935 m/s²

Acceleration in terms of g

\dfrac{a}{g}=\dfrac{28.66129935}{9.81}\\\Rightarrow a=2.92164g

a=2.92164g

Centripetal force is given by

F_c=ma_c\\\Rightarrow F_c=70\times 28.66129935\\\Rightarrow F_c=2006.29095\ N

The centripetal force is 2006.29095 N radially outward

The torque will be experienced when the centrifuge is speeding up of slowing down i.e., when it is accelerating and decelerating.

3 0
3 years ago
What is the magnitude of g at a height above Earth's surface where free-fall acceleration equals 6.5m/s^2?
prohojiy [21]

You've given the answer, right there in your question.

The "magnitude of gravity" is described in terms of the acceleration
due to it, and you just told us what that is.

We can also notice that the figure you gave is about 0.66 of the
acceleration due to gravity on the Earth's surface. That tells us that
the distance from the Earth's center at that height is about 

                     (1 / √0.66) = 1.23 times

the Earth's radius, so the height is about  910 miles above the surface.


7 0
3 years ago
How does the sun's energy most directly influence precipitation in an area?
topjm [15]
The sun's energy influences climate in various ways. For example the latitudes at the equator receive more energy from the sun and therefore have warmer temperatures, On the other hand the sun's energy influences precipitation in a climate by driving the water cycle which determines precipitation.The sun is what makes the water cycle take place. That is the sun provides energy or heat to the earth; the heat causes liquid and frozen water to evaporate into water vapor gas, which rises high in the sky to form clouds ( precipitation), that in turn give us rain
5 0
3 years ago
Other questions:
  • If an object is thrown upward at 128 feet per second from a height of 76 feet, its height S after t seconds is given by the foll
    10·1 answer
  • A 0.020-kg bullet traveling at a speed of 300 m/s embeds in a 1.0-kg wooden block resting on a horizontal surface. The block sli
    14·1 answer
  • Calculate the pressure on the bottom of a swimming pool 3. 5 m deep. How does the pressure compare with atmospheric pressure, 10
    11·1 answer
  • When a light beam reflects from a plane mirror , how do you measure the angle of incidence
    8·1 answer
  • Explain how convection currents help mushrooms reproduce. Which spheres are interacting in this example?
    12·1 answer
  • (a) The stick is supported by a sharp point at the middle. On the left side, a weight of 100 g is suspended at 40 cm from the mi
    12·1 answer
  • Chintu and raven build a roccket, which moved from the earth to about 86m into the shy. It tales 3.7 seconds to reach the rocket
    6·1 answer
  • A 1000 kg boulder sits at the top of a 50-meter high cliff. Determine the amount of potential energy possessed by the boulder if
    15·2 answers
  • A box is at rest on a slope
    11·1 answer
  • During photosynthesis, plants transform the energy in sunlight into chemical
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!