Answer:
a) Osmolarity measures the moles of solute per liter of solution.
Explanation:
Osmolarity is defined as the number of moles of solute that contribute to the osmotic pressure, per liter of solution, of solution. That is, the measurement of the solute concentration. The prefix "osmo-" indicates the possible variation of the osmotic pressure in the cells, which will occur when the solution is introduced into the body.
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.
I think its Mercury because it's the closest to the sun.
Usually, it increases the solubility in water.
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles.
</span>2.39 moles Ne ( 6.022 x 10^23 atoms / mole ) = 1.44 × 10^24 atoms Ne