1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
15

A student travels 4.0m East, 8.0m South, 4.0m west, and finally 8.0m north. What is her displacement

Physics
1 answer:
Vedmedyk [2.9K]3 years ago
3 0

Answer:

travel travelled 24 meters

You might be interested in
Assuming that Albertine's mass is 60.0 kg , for what value of μk, the coefficient of kinetic friction between the chair and the
makvit [3.9K]

Answer:

\mu_k=0.101

Explanation:

It is given that,

Mass of Albertine, m = 60 kg

It can be assumed, the spring constant of the spring, k = 95 N/m

Compression in the spring, x = 5 m

A glass sits 19.8 m from her outstretched foot, h = 19.8 m

When she just reach the glass without knocking it over, a force of friction will also act on it. Using the conservation of energy for the spring mass system such that,

\dfrac{1}{2}kx^2=\mu_k mgh

\mu_k=\dfrac{kx^2}{2mgh}

\mu_k=\dfrac{95\times (5)^2}{2\times 60\times 9.8\times 19.8}

\mu_k=0.101

So, the coefficient of kinetic friction between the chair and the waxed floor is 0.101. Hence, this is the required solution.

3 0
3 years ago
UCaShoTLLOuuj9D4vqFtTpSQ<br><br> search
Bond [772]

Answer:

ok i searched it up in google and it showed links XDDDD

Explanation:

4 0
3 years ago
Assuming 84.0% efficiency for the conversion of electrical power by the motor, what current must the 13.0-V batteries of a 716 k
tino4ka555 [31]

Answer:

\mathbf{ current(I) =1766.67 \ A}

Explanation:

Given that:

The air resistance and friction = 700 N

The gravity caused force = 716 × 9.8 = 7016.8

Total force = (7016.8 + 700) N

Total force = 7716.8 N

∴

13 \times  current(I) \times 0.84 = \dfrac{7716.8 \times 300}{2 \times 60}

current(I) \times 10.92= 19292

current(I) = \dfrac{19292}{10.92}

\mathbf{ current(I) =1766.67 \ A}

8 0
3 years ago
A satellite with a mass of 110 kg and a kinetic energy of 3.0 ´ 109 J must be moving at a speed of
djverab [1.8K]

Answer: A satellite with a mass of 110 kg and a kinetic energy of 3.08×10^9 J must be moving at a speed of 7483 m/s.

Explanation: To find the answer we need to know about the kinetic energy of a body.

<h3>How to solve the problem the equation of kinetic energy?</h3>
  • We have the expression for kinetic energy of a body as,

                                   KE=\frac{1}{2}mv^2

  • Given that,

                                   m=110kg\\KE=3.08*10^9J\\

  • We have to find the speed of the satellite,

                               v=\sqrt{\frac{2KE}{m} } =\sqrt{\frac{2*3.08*10^9}{110} } =7.483*10^3 m/s

Thus, we can conclude that, the velocity of the satellite will be 7438m/s.

Learn more about Kinetic energy here:

brainly.com/question/28105739

#SPJ4

8 0
2 years ago
Read 2 more answers
The spaceship Intergalactica lands on the surface of the uninhabited Pink Planet, which orbits a rather average star in the dist
Sidana [21]

Complete Question

The spaceship Intergalactica lands on the surface of the uninhabited Pink Planet, which orbits a rather average star in the distant Garbanzo Galaxy. A scouting party sets out to explore. The party's leader–a physicist, naturally–immediately makes a determination of the acceleration due to gravity on the Pink Planet's surface by means of a simple pendulum of length 1.08m. She sets the pendulum swinging, and her collaborators carefully count 101 complete cycles of oscillation during 2.00×102 s. What is the result? acceleration due to gravity:acceleration due to gravity: m/s2

Answer:

The acceleration due to gravity is  g = 167.2 \ m/s^2  

Explanation:

From the question we are told that

     The length of the simple pendulum is L = 1.081.08 \ m

      The number of cycles is  N =  101

       The time take is  t =  2.00 *10^{2 \ }s

Generally the period of this oscillation is mathematically evaluated as

         T = \frac{N}{t }

substituting values

         T = \frac{101}{2.0*10^2 }

        T = 0.505 \  s

The period of this oscillation is mathematically represented  as

               T = 2 \pi \sqrt{\frac{l}{g} }

making g the subject of the formula we have

              g = \frac{L}{[\frac{T}{2 \pi } ]^2 }

              g = \frac{4 \pi ^2 L }{T^2 }

Substituting values

               g = \frac{4 * 3.142 ^2  * 1.08 }{505.505^2 }

               g = \frac{4 * 3.142 ^2  * 1.08 }{0.505^2 }  

              g = 167.2 \ m/s^2  

7 0
3 years ago
Other questions:
  • A friend claims that her car can accelerate from a stop to 60 mi/h (26.8 m/s) in 5.1 s , but the speedometer is broken. You deci
    11·1 answer
  • A rubber ball filled with air has a diameter of 24.2 cm and a mass of 0.459 kg. What force is required to hold the ball in equil
    11·1 answer
  • An 82.0 kg spacewalking astronaut pushes off a 655 kg satellite, exerting a 95.0 N force for the 0.530 s it takes him to straigh
    9·1 answer
  • How much force is needed to accelerate an object of mass 90 kg at a rate of 1.2 m/s2
    11·2 answers
  • What are AR,L,K in the periodic table
    12·2 answers
  • A piston/cylinder contains 2 kg of water at 20◦C with a volume of 0.1 m3. By mistake someone locks the piston, preventing it fro
    6·1 answer
  • Someone help me pls
    11·2 answers
  • A 10 g bullet moving horizontally with a speed of 2000 m/s strikes and passes through a 4.0 kg block moving with a speed of 4.2
    10·1 answer
  • When light strikes an object, what happens to some of the light?
    14·1 answer
  • How long will it take a horse to go from rest to 19 km/hr if it is accelerating at 5<br> km/hr 2 ?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!