1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
3 years ago
10

The spaceship Intergalactica lands on the surface of the uninhabited Pink Planet, which orbits a rather average star in the dist

ant Garbanzo Galaxy. A scouting party sets out to explore. The party's leader–a physicist, naturally–immediately makes a determination of the acceleration due to gravity on the Pink Planet's surface by means of a simple pendulum of length 1.081.08 m. She sets the pendulum swinging, and her collaborators carefully count 101101 complete cycles of oscillation during 2.00×1022.00×102 s. What is the result? acceleration due to gravity:acceleration due to gravity: m/s2
Physics
1 answer:
Sidana [21]3 years ago
7 0

Complete Question

The spaceship Intergalactica lands on the surface of the uninhabited Pink Planet, which orbits a rather average star in the distant Garbanzo Galaxy. A scouting party sets out to explore. The party's leader–a physicist, naturally–immediately makes a determination of the acceleration due to gravity on the Pink Planet's surface by means of a simple pendulum of length 1.08m. She sets the pendulum swinging, and her collaborators carefully count 101 complete cycles of oscillation during 2.00×102 s. What is the result? acceleration due to gravity:acceleration due to gravity: m/s2

Answer:

The acceleration due to gravity is  g = 167.2 \ m/s^2  

Explanation:

From the question we are told that

     The length of the simple pendulum is L = 1.081.08 \ m

      The number of cycles is  N =  101

       The time take is  t =  2.00 *10^{2 \ }s

Generally the period of this oscillation is mathematically evaluated as

         T = \frac{N}{t }

substituting values

         T = \frac{101}{2.0*10^2 }

        T = 0.505 \  s

The period of this oscillation is mathematically represented  as

               T = 2 \pi \sqrt{\frac{l}{g} }

making g the subject of the formula we have

              g = \frac{L}{[\frac{T}{2 \pi } ]^2 }

              g = \frac{4 \pi ^2 L }{T^2 }

Substituting values

               g = \frac{4 * 3.142 ^2  * 1.08 }{505.505^2 }

               g = \frac{4 * 3.142 ^2  * 1.08 }{0.505^2 }  

              g = 167.2 \ m/s^2  

You might be interested in
The velocity time graph of a car shown below a) Calculate the magnitude of displacement of the car in 40 seconds. b) During whic
Gekata [30.6K]

Answer:

a) 0 metres

b) From time 0 s to 10 s , the car was accelerated. Its velocity accelerated from 0m/s to 20 m/s

c) 20 m/s

Explanation:

a) <em>Formula of displacement= velocity x time</em>

time=40 s

velocity =0 m/s

∴ displacement= 0 x 40 = 0 m

Magnitude of displacement is 0 m

b) The increase in velocity shows that there has been acceleration.

c) The average velocity of the car is =\frac{0+40}{2\\}   {initial velocity + final velocity}

                                                            =\frac{40}{2}

                                                             =20

Therefore, the magnitude of the average velocity  of the car is 20 m/s

3 0
3 years ago
A 40 g ball rolls around a 30 cm -diameter L-shaped track, shown in the figure, (Figure 1)at 60 rpm . What is the magnitude of t
levacccp [35]

Answer:

0.47 N

Explanation:

Here we have a ball in motion along a circular track.

For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.

This force is called centripetal force, and its magnitude is given by:

F=m\omega^2 r

where

m is the mass of the object

\omega is the angular velocity

r is the radius of the circle

For the ball in this problem we have:

m = 40 g = 0.04 kg is the mass of the ball

\omega =60 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=6.28 rad/s is the angular velocity

r = 30 cm = 0.30 m is the radius of the circle

Substituting, we find the force:

F=(0.040)(6.28)^2(0.30)=0.47 N

3 0
3 years ago
What has been happening to the cosmic microwave background radiation since the Big Bang?​
kondor19780726 [428]

Answer:

Explanation:

Cosmologists refer to a "surface of last scattering" when the CMB photons last hit matter; after that, the universe was too big. So when we map the CMB, we are looking back in time to 380,000 years after the Big Bang, just after the universe was opaque to radiation. But the CMB was first found by accident.

plz mark as brainliest

6 0
3 years ago
Rachel is in a car that was struck by lightning. is she safe?
Eduardwww [97]

yes she is very safe inside

5 0
3 years ago
Read 2 more answers
A 500 kg dragster accelerates from rest to a final speed of 100 m/s in 400 m (about a quarter of a mile) and encounters an avera
Fantom [35]
In order to accelerate the dragster at a speed v_f = 100 m/s, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is
W= K_f - K_i = K_f =  \frac{1}{2}mv_f^2=2.5 \cdot 10^6 J

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:
W_f = F_f d = -(1200 N)(400 m)= -4.8 \cdot 10^5 J
and the sign is negative because the frictional force acts against the direction of motion of the dragster.

This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is -W_f:
W_t = W + (-W_f)=2.5 \cdot 10^6 J+4.8 \cdot 10^5 J=2.98 \cdot 10^6 J

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:
P= \frac{W}{t}= \frac{2.98 \cdot 10^6 J}{7.30 s}=4.08 \cdot 10^6 W

And since 1 horsepower is equal to 746 W, we can rewrite the power as
P=4.08 \cdot 10^6 W \cdot  \frac{1 hp}{746 W} =547 hp



3 0
4 years ago
Read 2 more answers
Other questions:
  • The sketch shows a painter’s scaffold in mechanical equilibrium. The person in the middle weighs 225 N, and the tension in each
    12·1 answer
  • Many scientists believe the solar system formed _______________ago, Question 1 options: over 4.5 billion years under 1 billion y
    13·1 answer
  • For question #17, use the following picture:
    9·1 answer
  • Three liquids that will not mix are poured into a cylindrical container. The volumes and densities of the liquids are
    7·1 answer
  • The rhinestones in costume jewelry are glass with index of refraction 1.50. To make them more reflective, they are often coated
    5·1 answer
  • What is the magnitude (in N/C) and direction of an electric field that exerts a 3.50 ✕ 10−5 N upward force on a −1.55 µC charge?
    15·1 answer
  • Jupiter, the largest planet in the solar system, has an equatorial radius of about 7.1 x 10^4km (more than 10 times that of Eart
    13·1 answer
  • How could you increase the sliding friction between the sled and track? How could you decrease it?​
    12·2 answers
  • The change in momentum that occurs when a 1. 0 kg ball traveling at 4. 0 m/s strikes a wall and bounces back at 2. 0 m/s is.
    5·1 answer
  • If one end of a heavy rope is attached to one end of a lightweight rope, a wave can move from the heavy rope into the lighter on
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!