Answer:
John Dalton
Explanation:
John Dalton in 1808 suggested that all matter consists of tiny particles called atoms and that the atoms of a specific element are identical.
He postulated the Dalton's atomic theory which has the following important parts;
- All matters consists of indivisible particles called atoms
- Atoms of the same element are similar and are different from atoms of other elements.
- Atoms can neither be created nor destroyed.
- Atoms combine in simple whole ratios to form compounds.
Answer:
Test tubes A and B turn a darker blue color.
Explanation:
Based on the information provided in the question it can be said that they should have noticed that Tube A and Tube B turned a dark blue color. This is because the starch turns the solution in the test tubes into a dark blue color due to the negative reaction caused by the conversion of starch present in salivary amylase
Answer:
15 protons
8 electrons in valence shell after accepting 3 electrons
Neutral/no charge before accepting 3 electrons
-3 charge after accepting 3 electrons
Question:
A student weighed an empty graduated cylinder. It weighed 35.86 g. She then carefully added water to the graduated cylinder until it reached the 7.5 mL mark. When she weighed the graduated cylinder again, this time with the 7.5 mL of water in it, it weighed 43.18 g. What was this student's experimental density of water?
Answer:
0.976 g/mL
Explanation:
Weight of empty cylinder = 35.86g
Volume of water = 7.5mL
Weight of cylinder + water = 43.18g
Experimental density = ?
Density of water = Mass of water / volume of water
Mass of water = (Weight of cylinder + water) - Weight of empty cylinder
Mass of water = 43.18 - 35.86 = 7.32g
Density = 7.32 / 7.5 = 0.976 g/mL
First, calculate for the mass of the aqueous solution by multiplying the given volume (in mL) by the density (in g/mL). In mathematical equation, that is,
m = ρV
where m is mass, ρ is density, and V is volume. Substituting the known values,
m = (1.03 g/mL)(250 mL) = 257.5 g
To get the concentration in ppm, divide the given mass of methanol by the mass of the solution. Note that the parts-per million (ppm) is equal to mass of solute in milligram(mg) divided by the mass of solution in kilogram (kg)
C (in ppm) = (1.56 x 10^-6 g)(1000 mg/1 g) / (257.5 g)(1 kg/1000 g)
Simplifying,
C (in ppm) = (1.56 x 10^-3 mg)/ 0.2575 kg
C (in ppm) = 0.00606 ppm
<em>Answer: 0.00606 ppm</em>