1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
2 years ago
12

What is the correct justification for the indicated steps?

Mathematics
2 answers:
Oliga [24]2 years ago
5 0

Answer:

Step A: Product of Powers

Step C: Distributive Property

Step D: Trigonometric Sum Identity

Step-by-step explanation:

Correct on Edge :)

yanalaym [24]2 years ago
4 0

The given proof of De Moivre's theorem is related to the operations of

complex numbers.

<h3>The Correct Responses;</h3>
  • Step A: Laws of indices
  • Step C: Expanding and collecting like terms
  • Step D: Trigonometric formula for the cosine and sine of the sum of two numbers

<h3>Reasons that make the above selection correct;</h3>

The given proof is presented as follows;

\mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1}}

  • Step A: By laws of indices, we have;

\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1} = \mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}

\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] =  \mathbf{\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}

  • Step B: By expanding, we have;

\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] = cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i  \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right]

  • Step D: From trigonometric addition formula, we have;

cos(A + B) = cos(A)·cos(B) - sin(A)·sin(B)

sin(A + B) = sin(A)·cos(B) + sin(B)·cos(A)

Therefore;

cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i  \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right] = \mathbf{ cos(k \cdot \theta + \theta) + i \cdot sin(k \cdot \theta  + \theta)}

Learn more about  complex numbers here:

brainly.com/question/11000934

You might be interested in
5/8 x 3<br><br> Btw its not improper<br><br> PLS GOD WHAT IS IT
Elina [12.6K]

Answer: 1.875 I am pretty sure that is it

8 0
2 years ago
Read 2 more answers
How do addition facts help you subtract
Lena [83]

A number fact is made up of three numbers. These three numbers can be used to make up other number facts. Knowing one fact can help children with other facts. Look at the number facts we can make with the numbers 3, 4, and 7.

<span><span>Addition FactsSubtraction Facts</span><span>3 + 4 = 77 – 3 = 4</span><span>4 + 3 = 7<span>7 – 4 = 3</span></span></span>
8 0
2 years ago
Read 2 more answers
) Solve the inequality n -7&gt; -4.<br><br><br><br> HELP ASAP DUE IN A COUPLE HOURS
PilotLPTM [1.2K]

Answer:

n>3

Step-by-step explanation:

HOPE THIS HELPED IF YOU WANT I CAN HELP YOU IF THERES ANYMORE.

6 0
2 years ago
You roll a six-sided die. Find the probability of each event.
kirill [66]

Answer:

The probability of rolling an answer less than 5 is 66.7 percent

Step-by-step explanation:

5 0
2 years ago
What is the value of the discriminant?<br> 2K2 = 10k - 2
Phoenix [80]

Answer:

84

Step-by-step explanation:

Given a quadratic equation in standard form, ax² + bx + c = 0 : a ≠ 0

Then the discriminant is Δ = b² - 4ac

2k² = 10k - 2 ( subtract 10k - 2 from both sides )

2k² - 10k + 2 = 0 ← in standard form

with a = 2, b = - 10 and c = 2, thus

b² - 4ac = (- 10)² - (4 × 2 × 2) = 100 - 16 = 84

7 0
2 years ago
Other questions:
  • Susie has a bag with 9 hair pins,2 snacks, and 4 books. What is the ratio of books to pencils?​
    9·1 answer
  • A Web music store offers two versions of a popular song. The size of the standard version is 2.8 megabytes (MB). The size of the
    15·1 answer
  • Select the polynomial that can be factored as (4x - 3)^2.
    10·1 answer
  • Which shape has opposite sides that are both equal in length and parallel and always has four right angles? A. triangle B. recta
    13·1 answer
  • Ms. Fideli can divide all the students in the chorus into equal groups of 12 students each. How many students could be in the ch
    10·2 answers
  • Plz HELP will give extra points
    9·2 answers
  • Need help!!! Worth 13 points!
    14·1 answer
  • If there are 180 members of the 8th-grade class, what percent preferred either the museum or the sports complex?
    7·2 answers
  • Robin had 40 apples to give to 3 groups of children.
    12·2 answers
  • 1. Two sides of a right triangle are 8 and 12 in. a. Find the missing side if these are the lengths of the legs.​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!