We use v=IR and assuming the resistance doesn’t change we can also say that the voltage and current (I) are directly proportional which means the voltage also decreases by 1/2
Answer:
The appropriate solution is "61.37 s".
Explanation:
The given values are:
Boat moves,
= 10 m/s
Water flowing,
= 1.50 m/s
Displacement,
d = 300 m
Now,
The boat is travelling,
= 
= 
Travelling such distance for 300 m will be:
⇒ 

On putting the values, we get


Throughout the opposite direction, when the boat seems to be travelling then,
= 
= 
Travelling such distance for 300 m will be:
⇒ 

On putting the values, we get


hence,
The time taken by the boat will be:
= 
= 
On Earth, a cannonball with a mass of 20 kg would weigh 196 Newtons.
With the formula F=mg, where F is the weight in Newtons, m is the mass, and g is the acceleration due to gravity on the Earth which is 9.8m/s^2.
F=20kg x 9.8m/s^2= 196 Newtons
BUT on the moon, acceleration due to gravity is 1.6 m/s^2,
so F=mg=20kgx1.6m/s^2= 32 N
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.