Explanation:
In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. It is the macroscopic energy associated with a system. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy (dissipation) and an increase in temperature was discovered by James Prescott Joule.
Answer:
Force is 432.94 N along the rebound direction of ball.
Explanation:
Force is rate of change of momentum.

Final momentum = 0.38 x -1.70 = -0.646 kgm/s
Initial momentum = 0.38 x 2.20 = 0.836 kgm/s
Change in momentum = -0.646 - 0.836 = -1.472 kgm/s
Time = 3.40 x 10⁻³ s

Force is 432.94 N along the rebound direction of ball.
Answer:
6.0 m/s vertical and 9.0 m/s horizontal
Explanation:
For the vertical component, we use the formula:
- Sin(34°) = <em>y</em> / 10.8
Then we <u>solve for </u><u><em>y</em></u>:
- 0.559 = <em>y</em> / 10.8
And for the horizontal component, we use the formula:
- Cos(34°) = <em>x</em> / 10.8
Then we <u>solve for </u><u><em>x</em></u><u>:</u>
- 0.829 = <em>x</em> / 10.8
So the answer is " 6.0 m/s vertical and 9.0 m/s horizontal".
Answer:
3.57 m/s
Explanation:
The sum of the 2 momentums Is equal the finale momentums. so if momentums Is q, v Is velocity and m Is Mass, q3=m1*v1+m2**v2=16+9=25 m*kg/s
q3=m3*v3
v3=q3/m3=25/(4+3)=3.57m/s
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)