Answer:
C11H25SO4
Explanation:
The total mass of the compound is 253.4 g, so, the mass of each element will be:
C: 52.14% of 253.4 = 0.5214x253.4 = 132.12 g
H: 9.946% of 253.4 = 0.09946x253.4 = 25.20 g
S: 12.66% of 253.4 = 0.1266x253.4 = 32.08 g
O: 25.26% of 253.4 = 0.2526x253.4 = 64.00 g
The molar mass are: C = 12 g/mol, H 1 g/mol, S = 32 g/mol, and O = 16 g/mol
So, to know how much moles will be, just divide the mass calculated above for the molar mass:
C: 132.12/12 = 11 moles
H: 25.20/ 1 = 25 moles
S: 32.08/32 = 1 mol
O: 64.00/16 = 4 moles
So the molecular formula is C11H25SO4
Answer:
The chemist can either:
a. Use a small fractionation apparatus.
b. Add a compound with a much higher boiling point.
Explanation:
Using a smaller fractionation apparatus or Vigreux column will help to minimize loss of the distillate.
If a compound with a higher boiling point is added, the vapors of this liquid will displace the vapors of this small amount of compound with a lower boiling point. This compound with a higher boiling point is known as a Chaser.
Answer:b.CaCl2
Explanation:
A compound is a substance resulting when two or more elements are are chemically bonded together either ionically or covalently in a fixed ratio.
From the given options we can see that the only compound there is CaCl2 which is an ionic compound in the fixed ratio of one calcium ion to two chloride ions.
Other options , Cu,Na and Nd are merely pure substance---Elements
Answer: product
Explanation:
Each substance written to the right of the arrow in a chemical equation is referred to as a product.
When writing a chemical equation, the substance that's written to the left of arrow in the equation is the reactants.
On the other hand which is the right side is the product.
Answer:
The initial temperature of the metal is 84.149 °C.
Explanation:
The heat lost by the metal will be equivalent to the heat gain by the water.
- (msΔT)metal = (msΔT)water
-32.5 grams × 0.365 J/g°C × ΔT = 105.3 grams × 4.18 J/g °C × (17.3 -15.4)°C
-ΔT = 836.29/12.51 °C
-ΔT = 66.89 °C
-(T final - T initial) = 66.89 °C
T initial = 66.89 °C + T final
T initial = 66.89 °C + 17.3 °C
T initial = 84.149 °C.