Answer:
4.186 m/s^2
Explanation:
First, convert km/hr to m/s:
(75 km/hr)(1000m/1km)(1hr/60min)(1min/60s) = 20.83 m/s
Then, divide 20.93 m/s by 5.0s
(20.93 m/s) / (5.0s) = 4.186 m/s^2
Answer:
Since 2 pi = 360 deg and pi equals 180 deg, 30 deg = pi / 6.
S = theta * R = pi / 6 * 3 cm = 1.57 cm
Answer:
Because the object should shrink its volume to zero, which is impossible
Explanation:
Let's talk about gases for simplicity. Ideal gases are governed by the ideal gas equation:

where
p is the gas pressure
V is the volume of the gas
n is the number of moles
R is the gas constant
T is the absolute temperature
From the formula, we see that T and V are directly proportional: therefore, in order for a gas to have an absolute temperature of zero, it must also have a volume of zero, which is impossible.
This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.