Answer:
The thrust is 
Explanation:
Given that,
Mass of gas, 
The rate at which the gas is expelling, 
We need to find the thrust produced by the gas.
We know that force is equal to the rate of change of momentum. So,

Also, p = mv

So,

So, the thrust is 
Answer:
the answer would be "using more heat" btw
Explanation:
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
Answer:
Speed of the this part is given as

Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
Explanation:
As we know by the momentum conservation of the system
we will have

here we know that

the momentum of two parts are equal in magnitude but perpendicular to each other
so we will have


now from above equation we have



Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
V = 340 m/s
f = 256 Hz
lambda (wavelength)
v = f*lambda
340 = 256 * lambda
340/256 = lambda
lambda = 1.328 m