Answer:
a) 
b)
c) 
d) Treat the humans as though they were points or uniform-density spheres.
Explanation:
Given:
- mass of Mars,

- radius of the Mars,

- mass of human,

a)
Gravitation force exerted by the Mars on the human body:

where:
= gravitational constant


b)
The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.


c)
When a similar person of the same mass is standing at a distance of 4 meters:


d)
The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.
- Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
- Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
Answer:
2.25in³
Explanation:
For a 12 awg conductor the minimum volume allowance as stated by the NEC is 2.25in³
See attached Table 314.16(B) from NEC 2011
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.
Answer:
two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go