Answer:
153.6 kN
Explanation:
The elastic constant k of the block is
k = E * A/l
k = 95*10^9 * 0.048*0.04/0.25 = 729.6 MN/m
0.12% of the original length is:
0.0012 * 0.25 m = 0.0003 m
Hooke's law:
F = x * k
Where x is the change in length
F = 0.0003 * 729.6*10^6 = 218.88 kN (maximum force admissible by deformation)
The compressive load will generate a stress of
σ = F / A
F = σ * A
F = 80*10^6 * 0.048 * 0.04 = 153.6 kN
The smallest admisible load is 153.6 kN
The first question has the answer to your problem! I found the answer key!
Answer:
Explanation:
In this process energy must be conserved. On the initial stage, there will be only gravitational potential energy, while on the final stage there will be only elastic potential energy, so they will be equal. We write this as:
Which is the same as:
So we can obtain our mass from there, and for our values:
Because it just it dndbsnsnsbsnsnsnsnsnsnsnsnsn
Roughly 50 for me i dont know about anyone else