Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
Fluorine has nine protons
<span>The entire time the ball is in the air, its acceleration is 9.8 m/s2 down provided this occurs on the surface of the Earth. Note that the acceleration can be either 9.8 m/s2 or -9.8 m/s2.
[Please Mark as Brainliest]
</span>
Answer:
A) The north pole of a bar magnet will attract the south pole of another bar magnet.
B) Earth's geographic north pole is actually a magnetic south pole.
E) The south poles of two bar magnets will repel each other.
Explanation:
<u>According to </u><u>classical physics</u>, a magnetic field always has two associated magnetic poles (north and south), the same happens with magnets. This means that if we break a magnet in half, we will have two magnets, where each new magnet will have a new south pole, and a new north pole.
This is because <u>for classical physics, naturally, magnetic monopoles can not exist. </u>
In this context, Earth is similar to a magnetic bar with a north pole and a south pole. This means, the axis that crosses the Earth from pole to pole is like a big magnet.
Now, by convention, on all magnets the north pole is where the magnetic lines of force leave the magnet and the south pole is where the magnetic lines of force enter the magnet.
Then, for the case of the Earth, the north pole of the magnet is located towards the geographic south pole and the south pole of the magnet is near the geographic north pole.
And it is for this reason, moreover, that the magnetic field lines enter the Earth through its magnetic south pole (which is the geographic north pole).
Answer: D. Energy released from atoms.