The period of a pendulum is given by

where L is the pendulum length and g is the gravitational acceleration.
We can write down the ratio between the period of the pendulum on the Moon and on Earth by using this formula, and we find:

where the labels m and e refer to "Moon" and "Earth".
Since the gravitational acceleration on Earth is

while on the Moon is

, the ratio between the period on the Moon and on Earth is
An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.
Pressure = Force/ Area = 3000/2 = 1500 pascal.
C and d have the same amount of protons and electrons
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.