1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
3 years ago
8

Define the following:

Physics
2 answers:
exis [7]3 years ago
6 0

Answer

potential energy is the energy that is stored in an object due to its position relative to some zero position. An object possesses gravitational potential energy if it is positioned at a height above (or below) the zero height.

Kinetic energy is a form of energy that an object or a particle has by reason of its motion. ... Kinetic energy is a property of a moving object or particle and depends not only on its motion but also on its mass.

The energy of an object due to its motion or position; the sum of an object's kinetic energy and potential energy is called mechanical energy.

Energy stored in the bonds of chemical compounds. Chemical energy may be released during a chemical reaction, often in the form of heat; such reactions are called exothermic

Sound energy is defined as the movement of vibrations through matter. Sound energy is produced when an object vibrates, which results in noise. The sound vibrations cause waves of pressure that travel through a medium, such as air, water, wood, or metal.

Light energy is a kind of kinetic energy with the ability to make types of light visible to human eyes. Light is defined as a form of electromagnetic radiation emitted by hot objects like lasers, bulbs, and the sun. Light contains photons which are minute packets of energy.

Nuclear energy is energy in the nucleus (core) of an atom. ... It can be released from atoms in two ways: nuclear fusion and nuclear fission. In nuclear fusion, energy is released when atoms are combined or fused together to form a larger atom. This is how the sun produces energy.

belka [17]3 years ago
5 0
Define the following:
Potential energy: In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Kinetic energy: In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
Mechanical energy:
Chemical energy: chemical energy, Energy stored in the bonds of chemical compounds. Chemical energy may be released during a chemical reaction, often in the form of heat; such reactions are called exothermic. Reactions that require an input of heat to proceed may store some of that energy as chemical energy in newly formed bonds
Sound energy: In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.
Light energy: Light energy is a kind of kinetic energy with the ability to make types of light visible to human eyes. Light is defined as a form of electromagnetic radiation emitted by hot objects like lasers, bulbs, and the sun. Light contains photons which are minute packets of energy.
Nuclear energy: Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants
You might be interested in
Need help now due in 5 minutes
rjkz [21]

Answer:

I'm positive it's the last one

Explanation:

6 0
4 years ago
What initially unknown quantity, together with the wavelength, is sufficient to calculate the stopping potential for 400 nmnm li
kondaur [170]

Answer:

The initially known quantity, together with the wavelength, that is sufficient to calculate the stopping potential for electrons from the surface of a metal is called the WORK FUNCTION.

Explanation:

The stopping potential is defined as the potential that is required to stop electrons from being ejected from the surface of a metal when light with energy greater than the metal's work function/work potential is incident on the metal.

Given that light is known to be made up of photons, which carry energy in packets according to the frequencies of the light.

The photoelectric phenomenon explains that when light of a certain frequency that corresponds to an energy level that is higher than a metal's work function is incident on a metal, it will lead to electrons being ejected from the surface of the metal. The energy of the ejected electrons is then proportional to the difference between the energy level of the photons and the metal's work function.

Basically, it is the excess energy after overcoming the work function that rejects the electrons.

So, to prevent this excess energy from ejecting electrons from a metal's surface, an energy thay matches this excess must be in place to stop electrons from coming out. This energy/potential required to stop the ejection of electrons, is called the stopping potential.

The stopping potential is given as

eV₀ = hf - ϕ

The stopping potential (eV₀) them depends on the hf and the ϕ.

hf is the energy of the photons, where h is Planck's constant and f is the photons' frequency which is further given as

f = (c/λ)

c = speed of light (speed of the photons)

λ = wavelength of the photons.

The other quantity, ϕ, is the metal's work function; the amount of energy needed to be overcome by the photons before ejection of electrons is possible. It is the minimum energy that the light photoms must possess to even stand a chance of being able to eject electrons from a metal's surface.

So, the stopping potential is the difference between the energy of the photons (obtained using the photons' frequency, wavelength and/or speed) and the metal's work function.

Hope this Helps!!!!

3 0
4 years ago
A 282 kg bumper car moving 3.50 m/s collides with a 155 kg bumper car moving -1.38 m/s. Afterwards the 282 kg car moves at 1.10
icang [17]

Answer:

4.03 m/s

Explanation:

Initial momentum = final momentum

(282 kg) (3.50 m/s) + (155 kg) (-1.38 m/s) = (282 kg) (1.10 m/s) + (115 kg) v

v = 4.03 m/s

6 0
3 years ago
Read 2 more answers
The speed of sound in air is 345 m/s. A tuning fork vibrates above the open end of a sound resonance tube. If sound waves have w
anzhelika [568]

Answer:

594.8 Hz

Explanation:

Parameters given:

Speed of sound, v = 345 m/s

Wavelength = 58 cm = 0.58 m

Speed of a wave is given as:

Speed = wavelength * frequency

Therefore:

Frequency = Speed/Wavelength

Frequency = 345/0.58

Frequency = 594.8 Hz

8 0
3 years ago
A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
Elden [556K]

Answer:

(A) 374.4 J

(B) -332.8 J

(C) 0 J

(D) 41.6 J

(E)  351.8 J

Explanation:

weight of carton (w) = 128 N

angle of inclination (θ) = 30 degrees

force (f) = 72 N

distance (s) = 5.2 m

(A) calculate the work done by the rope

  • work done = force x distance x cos θ
  • since the rope is parallel to the ramp the angle between the rope and

        the ramp θ will be 0

       work done = 72 x 5.2 x cos 0

       work done by the rope = 374.4 J

(B) calculate the work done by gravity

  • the work done by gravity = weight of carton x distance x cos θ
  • The weight of the carton = force exerted by the mass of the carton = m x g
  • the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.

      work done by gravity = 128 x 5.2  x cos 120

      work done by gravity = -332.8 J

(C) find the work done by the normal force acting on the ramp

  • work done by the normal force = force x distance x cos θ
  • the angle between the normal force and the ramp is 90 degrees

       

         work done by the normal force = Fn x distance x cos θ

         work done by the normal force = Fn x 5.2 x cos 90

         work done by the normal force = Fn x 5.2 x 0

         work done by the normal force = 0 J

(D)  what is the net work done ?

  • The net work done is the addition of the work done by the rope,       gravitational force and the normal force

     net work done = 374.4 - 332.8 + 0 =  41.6 J  

(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal

  • work done by the rope= force x distance x cos θ
  • the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp

work done = 72 x 5.2 x cos 20

work done = 351.8 J

5 0
4 years ago
Other questions:
  • In each of the given pairs, choose which element will have the bigger atom. Give reasons for your choice. (a) Mg (atomic number
    13·1 answer
  • La _______________ abarca de los dos a los doce años. Se caracteriza por un continuo proceso de adaptación motora, cognoscitiva,
    8·1 answer
  • Consider a bicycle wheel to be a ring of radius 30 cm and mass 1.5 kg. Neglect the mass of the axle and sprocket. If a force of
    9·1 answer
  • A basket ball sits in the ball cage in the gym motionless
    14·1 answer
  • A cannon fires a shell straight upward; 1.6 s after it is launched, the shell is moving upward with a speed of 19 m/s. Assuming
    9·1 answer
  • Which statement best compares potential and lanetic energy?​
    6·1 answer
  • How did Dalton think atoms formed a new substance?
    10·1 answer
  • What units would you use to express a half-life?
    14·2 answers
  • A psychologist is interested in exploring the effect tutorial support on students academic performance and assign students in to
    5·1 answer
  • Give an example of Newton's second law in everyday life?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!