1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergij07 [2.7K]
3 years ago
10

What is a good hypothesis when putting pop rocks into soda?

Physics
1 answer:
8_murik_8 [283]3 years ago
6 0
That it will erupt upon contact. Hope it helps!
You might be interested in
A circuit has a resistance of 10 Ω and current of 5 A. What is the voltage?<br><br>​
raketka [301]

Answer: 50 V

Explanation:

V=IR\\V=(5)(10)\\V=50

6 0
3 years ago
Question:The greater the
Romashka-Z-Leto [24]

Answer:

True

Explanation:

when the object is larger , the inertia of the object is larger so its tendency to change its state of motion is reduced is reduced.

5 0
3 years ago
The number of electrons in a copper penny is approximately 10*10^23. How large would the force be on an object if it carried thi
slega [8]
The charge on the electron is 1.6x10^-19C. So, 10^24 of them will be a  charge of 1.6x10^5C, F = q1xq2/[(4pi epsilon nought)r^2]
3 0
3 years ago
Read 2 more answers
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
Why is it important to study electromagnetic waves?
labwork [276]
The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.
3 0
3 years ago
Other questions:
  • An object moves in a straight line and is speeding up. Which one of the following statements is true?
    11·1 answer
  • How much money did congress authorize to be spent on its construction
    13·1 answer
  • Find the volume of a box with length 25 cm, height 25 cm and width 1.0 m.
    11·1 answer
  • What is the period (time) that corresponds to oscillatory motion with a frequency of 23.4 Hz when the speed of light is 3.0×10^8
    5·1 answer
  • You are standing on a scale in an elevator. suddenly you notice your weight decreases. what do you conclude? a. the elevator is
    10·1 answer
  • The splitting of an atom to produce energy is called a ________ reaction.
    5·2 answers
  • Tarzans mass is 75kg. calculate his weight
    14·1 answer
  • List three different types of magnets
    14·2 answers
  • A force of 30 N is applied tangentially to the rim of a solid disk of radius 0.10 m. The disk rotates about an axis through its
    9·1 answer
  • ONLY ANSWER IF YOU KNOW FOR SURE PLEASE :)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!