0a%20_%7B6%7D%20x%20%5E%7B6%7D%20%2B%20a%20_%7B5%7D%20x%20%5E%7B5%7D%2B....%20%5C%5C%20%5Csf%20%2B%20a%E2%82%81x%20%2B%20a%20_%7B0%7D%2C%20then%20%5C%3A%20%5C%3A%20a_0%20%2B%20a%E2%82%81%20%2B%20a%E2%82%82%20%2B%20a_3%20%2B%20a_4%20%2B%20a_5%20%2B%20a_6%20%2B%20a7%20%3D%20" id="TexFormula1" title=" \sf \: If (3x-1) ^{7} = a _{7} x ^{7} + a _{6} x ^{6} + a _{5} x ^{5}+.... \\ \sf + a₁x + a _{0}, then \: \: a_0 + a₁ + a₂ + a_3 + a_4 + a_5 + a_6 + a7 = " alt=" \sf \: If (3x-1) ^{7} = a _{7} x ^{7} + a _{6} x ^{6} + a _{5} x ^{5}+.... \\ \sf + a₁x + a _{0}, then \: \: a_0 + a₁ + a₂ + a_3 + a_4 + a_5 + a_6 + a7 = " align="absmiddle" class="latex-formula"> a)0 b)1 c)128 d)64 Please solve this for me. Need step-by-step explanation. Spam free answer required. Thank you in anticipation.
2 answers:
Answer is c) 128
I added the step by step process in the pic attached, I don't know how to explain it very well but you can use binomial theorem for (3x-1)^7
Then you can add up all the coefficients of the calculated values as the question mentions afterwards a^7 + a^6 +..... which means it only wants you to add up the coefficients of the consecutive x terms, otherwise it would say a^7x^7 + a^6x^6 +..... and so on
Hope this helps :)
Answer:
hope it helps have a great day
Answer is option C
You might be interested in
It could be all it could be one but the true answer is I’m not sure which one
It can be the last one, 827 over 1120
Hope that helps
Answer:58 approximately c
Step-by-step explanation:
4.6 Is the answer I thinkkkkk
20% goes into 100% 5 times. So you do 480 times 5, which is 2400. So you answer is 2400.