
The heat capacity is given by the expression:






When the
is measured in the calorimeter, we obtain a value, and since we know the mass of the material and we control the change in
, we can then determine the specific heat "C" by simply remplazing in the expression.
Depends on the situation. It could be something like potential energy of a compressed or stretched spring.
Given:
Mass (m) = 1200 kg
Distance (s) = 100 m
Time (t) = 10 seconds
Now,

=

= 10 m/s
<span><u>
Note that this one is the final velocity.</u></span><u />
We also know that,
initial velocity (u) = 0 m/s .......<span>
because the car starts from rest.</span>Now,

=

=

= 1 m/s²
Now,
Force (F) = mass (m) * acceleration (a)
= 1200 kg * 1 m/s²
= 1200 kg.m/s²
= 1200 N
Now,
Work Done (W) = Force (F) * displacement (s) ....<span>
note that displacement is same as distance.
</span><span> = 1200 N * 100 m
</span> = 120000 N.m
= 120000 J
Now,
Power (P) =

=

= 12000 J/s
= 12000 watt
SO,
A) The acceleration of the car is 1 m/s².
B) 1200 Newton (N) force must have acted on the car.
C) The velocity of the car after 10 seconds is 10 m/s.
D) 120000 Joule (J) work was done on the car. E) The engine produced a minimum power of 12000 watt.
The term that describes the direction closest to the point of origin is Proximal. Dorsal is the directional term for the movement toward the back of the body. Cephalic is the term that describes the movement towards the top of the body. Ventral on the other hand describes the movement toward the front of the body.
Answer:
A) 1.3m
B) it shows the back of her hand
C) 4.86m
D) it shows the palm of her hand
E) 7.46m
F) it shows the back of her hand.
Explanation:
Detailed explanation is shown in the illustrative diagram below.