Answer:
E) the flow of energy due to a temperature difference.
Explanation:
Heat can be described as the flow of energy due to a temperature difference.
Which is expressed mathematically as;
H = MCΔT
Where;
H is the quantity of heat in a body, measured in Joules
M is the mass of the body, measured in kg
C is the specific heat capacity of the body, J/kg.K
ΔT is change in temperature or temperature difference.
So, heat energy in any system flows from a hotter region to a colder region due to temperature difference.
E) the flow of energy due to a temperature difference.
The vertical velocity is affected by the acceleration of gravity (ignoring the effects of air resistance usually)
Laws reflect scientific knowledge that experiments have repeatedly verified (and never falsified). Their accuracy does not change when new theories are worked out, but rather the scope of application, since the equation (if any) representing the law does not change.
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
Answer:
175 N/m
Explanation:
Given:
Force = F= 14.0 N
Distance = x = 8.00 cm = 0.08 m
To find:
spring constant
Solution:
spring constant is calculated by using Hooke's law:
k = F/x
Putting the values in above formula:
k = 14.0 / 0.08
k = 175 N/m