Answer:
The kinetic energy is: 50[J]
Explanation:
The ball is having a potential energy of 100 [J], therefore
PE = [J]
The elevation is 10 [m], and at this point the ball is having only potential energy, the kinetic energy is zero.
![E_{p} =m*g*h\\where:\\g= gravity[m/s^{2} ]\\m = mass [kg]\\m= \frac{E_{p} }{g*h}\\ m= \frac{100}{9.81*10}\\\\m= 1.01[kg]\\\\](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cg%3D%20gravity%5Bm%2Fs%5E%7B2%7D%20%5D%5C%5Cm%20%3D%20mass%20%5Bkg%5D%5C%5Cm%3D%20%5Cfrac%7BE_%7Bp%7D%20%7D%7Bg%2Ah%7D%5C%5C%20m%3D%20%5Cfrac%7B100%7D%7B9.81%2A10%7D%5C%5C%5C%5Cm%3D%201.01%5Bkg%5D%5C%5C%5C%5C)
In the moment when the ball starts to fall, it will lose potential energy and the potential energy will be transforme in kinetic energy.
When the elevation is 5 [m], we have a potential energy of
![P_{e} =m*g*h\\P_{e} =1.01*9.81*5\\\\P_{e} = 50 [J]\\](https://tex.z-dn.net/?f=P_%7Be%7D%20%3Dm%2Ag%2Ah%5C%5CP_%7Be%7D%20%3D1.01%2A9.81%2A5%5C%5C%5C%5CP_%7Be%7D%20%3D%2050%20%5BJ%5D%5C%5C)
This energy is equal to the kinetic energy, therefore
Ke= 50 [J]
Answer:
Displacement: 2.230 km Average velocity: 1.274
Explanation:
Let's represent displacement by the letter S and the displacement in direction 49.7° as A. Displaement is a vector, so we need to decompose all the bird's displacement into their X-Y compoments. Let's go one by one:
- 0.916 km due east is an horizontal direction and cane be seen as direction towards the negative side of X-axis.
- 0.928 km due south is a vertical direction and can be seen as a direction towards the negative side of Y-axis.
- 3.52 km in a direction of 49.7° has components on X and Y axes. It is necessary to break it down using trigonometry,
First of all. We need to sum all the X components and all the Y componets.
∑
⇒ ∑![Sx = [tex]3.52cos(49.7) - 0.916](https://tex.z-dn.net/?f=Sx%20%3D%20%5Btex%5D3.52cos%2849.7%29%20-%200.916)
∑
∑
⇒ ∑
∑
The total displacement is calculated using Pythagoeran therorem:
⇒

With displacement calculated, we can find the average speed as follows:
⇒ 

Answer:
1.6 kg
Step-by-step Solution:
Since Force = mass × acceleration we have:
F = 8N
a= 5 m/s^2
m = ?
By plugging the values above into F=ma we obtain:

Therefore, the Chromebook has a mass of 1.6 kilograms.
Answer:

Explanation:
The interaction of the piece of copper and water means that the first one need to transfer heat in order to reach a thermal equilibrium with water. Then:

After a quick substitution, the expanded expression is:



The final temperature of the system is:
