S.I. Unit of mass is Kilogram which is denoted by Kg
In short, Your Answer would be Option C
Hope this helps!
The only graph that accurately depict the given motion is graph D.
The given parameters;
- initial position of the man = 0
- direction of the man's first displacement = backward
- time of first motion, t₁ = 6 seconds
- velocity of this first displacement = v₁
- time without any motion (<em>zero movement</em>) = 6 seconds
- direction of the second displacement = forward
- velocity of second displacement = 2v₁
Let the acceleration of the first displacement = a
Acceleration of the second displacement = 2a
From the given graphs we can eliminate every graph without initial decrease or motion towards the negative direction.
The only options with initial motion towards the negative direction are;
The difference between graph B and D;
- in graph B there is a uniform motion for 6 seconds
- in graph D there is no motion for 6 seconds (<em>this is obvious as the line fall directly on top of the horizontal axis maintaining a value of zero for 6 seconds</em>).
Thus, the only graph that accurately depict the given motion is graph D.
Learn more here: brainly.com/question/21095906
Answer:
Explanation:
Power (p)= 40 watt
time (t)= 3 minutes = 180 seconds
Energy (E)= ?
we know
P = E/t
40 = E / 180
E = 7200 Joules
Therefore it does 7200 joules of work.
hope it helps :)
Answer:
3.1 miles
Explanation:
To solve this question it is important to remember that the distance between two mile markers is approximately 1 mile
Once this is known, the question becomes very easy to solve. We make two triangle, which have the following three points
Triangle 1: Hot-Air-Balloon, Ground, Milepost 1 - With angle of depression 20
Triangle 2: Hot-Air-Balloon, Ground, Milepost 2 - With angle of depression 18
As a reminder, the angle of depression is simply the angle the balloonist's head makes with the horizontal plane to be able to see the milepost.
From this we can simply drive two formulas using the Tan function
Equation 1 - 
Equation 2 - 
Solving them simultaneously we get the value of height (h) to be 3.0852 miles or 3.1 miles
Answer:
the horizontal velocity while it was falling is 22.1 m/s.
Explanation:
Given;
height of fall, h = 16 m
horizontal distance, x = 40 m
The time to travel 16 m is calculated as;

The horizontal velocity is calculated as;

Therefore, the horizontal velocity while it was falling is 22.1 m/s.