Answer:
d. To the left because Q > K_p
Explanation:
Hello,
In this case, for the given reaction:

The pressure-based equilibrium expression is:

In such a way, since Kp is given we rather compute the reaction quotient at the specificed pressure of carbon dioxide as shown below:

Therefore, since Q>Kp we can see that there are more products than reactants, which means that the reaction must shift leftwards towards the reactants in order to reestablish equilibrium, thus, answer is d. To the left because Q > Kp.
Regards.
Answer:
Because your body has built-in resistance to certain gases, no matter the size of the gas cloud.
That is why we are able to stay non-inert to these types of gases, like Carbon dioxide.
First write the molecular equation with states:
(NH4)2S (aq) + 2AgNO3(aq) → Ag2S (s) + 2NH4NO3
Now write a full ionic equation by separating into ions all substances that dissociate: anything (s) (g) or (l) does not dissociate
2NH4 + (aq) + S 2-(aq) + 2Ag+ (aq) + 2NO3- (aq) → Ag2S(s) + 2NH4 + (aq) + 2NO3- (aq)
To write the NET IONIC equation, inspect the full ionic equation above and delete anything that appears on both sides of the → sign:
Net ionic equation:
S 2-(aq) + 2Ag + (aq) → Ag2S(s)
Stoichiometry is the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers. Hoped this helped!!!!. Also if you are trying to look for the formulas it should be online just type in stoichometry formulas.
Answer:
Explanation:
It makes sense because Helium and Hydrogen only hold 1 and 2 subsequent protons/neutrons and electrons. When the Big Bang happened the entire universe was so hot that it was impossible for elements to form since it was impossible for electrons to stay bound to the atoms. After a few seconds the universe began to cool enough for electrons to bond to atoms and create different elements. Since Helium and Hydrogen have 1 and 2 electrons subsequently we can assume that they were the first elements to be created. Also they are the most abundant elements in the Universe which backs up this theory.