Answer:
what are the roles of minerals in maintaning homeostasis?
Explanation:
Scientific evidences abound of the occurrence of plastic pollution, from mega- to nano-sized plastics, in virtually all matrixes of the environment. Apart from the direct effects of plastics and microplastics pollution such as entanglement, inflammation of cells and gut blockage due to ingestion, plastics are also able to act as vectors of various chemical contaminants in the aquatic environment. This paper provides a review of the association of plastic additives with environmental microplastics, how the structure and composition of polymers influence sorption capacities and highlights some of the models that have been employed to interpret experimental data from recent sorption studies. The factors that influence the sorption of chemical contaminants such as the degree of crystallinity, surface weathering, and chemical properties of contaminants. and the implications of chemical sorption by plastics for the marine food web and human health are also discussed. It was however observed that most studies relied on pristine or artificially aged plastics rather than field plastic samples for studies on chemical sorption by plastics.
Answer:
THE CURRENT REQUIRED TO PRODUCE 193000 C OF ELECTRICITY IS 35.74 A.
Explanation:
Equation:
Al3+ + 3e- -------> Al
3 F of electricity is required to produce 1 mole of Al
3 F of electricity = 27 g of Al
If 18 g of aluminium was used, the quantity of electricity to be used up will be:
27 g of AL = 3 * 96500 C
18 G of Al = x C
x C = ( 3 * 96500 * 18 / 27)
x C = 193 000 C
For 18 g of Al to be produced, 193000 C of electricity is required.
To calculate the current required to produce 193 000 C quantity of electricity, we use:
Q = I t
Quantity of electricity = Current * time
193 00 = I * 1.50 * 60 * 60 seconds
I = 193 000 / 1.50 * 60 *60
I = 193 000 / 5400
I = 35.74 A
The cuurent required to produce 193,000 C of electricity by 18 g of aluminium is 35.74 A
Answer:
penicillin could protect mice against infection from deadly Streptococci.
Explanation:
Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.