Answer:
turgor pressure can be done in a lab or a self test.
turgor pressure is key to the plant’s vital processes. It makes the plant cell stiff and rigid. Without it, the plant cell becomes flaccid. Prolonged flaccidity could lead to the wilting of plants.
Turgor pressure is also important in stomate formation. The turgid guard cells create an opening for gas exchange. Carbon dioxide could enter and be used for photosynthesis. Other functions are apical growth, nastic movement, and seed dispersal.
Explanation:
- salt is bad for turgor pressure.
- Turgidity helps the plant to stay upright. If the cell loses turgor pressure, the cell becomes flaccid resulting in the wilting of the plant.
- The wilted plant on the left has lost its turgor as opposed to the plant on the right that has turgid cells.
Answer:
add x to 7 and divide by 3
Explanation:
easier formula
They are all in the same family
Answer:
27.9 g
Explanation:
CsF + XeF₆ → CsXeF₇
First we <u>convert 73.1 g of cesium xenon heptafluoride (CsXeF₇) into moles</u>, using its<em> molar mass</em>:
- Molar mass of CsXeF₇ = 397.193 g/mol
- 73.1 g CsXeF₇ ÷ 397.193 g/mol = 0.184 mol CsXeF₇
As <em>1 mol of cesium fluoride (CsF) produces 1 mol of CsXeF₇</em>, in order to produce 0.184 moles of CsXeF₇ we would need 0.184 moles of CsF.
Now we <u>convert 0.184 moles of CsF to moles</u>, using the <em>molar mass of CsF</em>:
- Molar mass of CsF = 151.9 g/mol
- 0.184 mol * 151.9 g/mol = 27.9 g