Explanation:
1) Based on the octet rule, iodine form an <u>I</u>⁻ ion.
Therefore,
Option E is correct ✔
2) The electronic configuration of the sulfide ion (S²⁻) is :
₁₆S = 1s² 2s² 2p⁶ 3s² 3p⁴ or [Ne] 3s² 3p⁴
₁₈S²⁻ = 1s² 2s² 2p⁶ 3s² 3p⁶ or [Ne] 3s² 3p⁶
Therefore,
Option E is correct ✔
3) valence shell electron of
Halogens = 7
Alkali metal = 1
Alkaline earth metal = 2
Therefore,
Option D is correct ✔
4) Group 2 element lose two electron in order to achieve Noble gas configuration.
And here Group 2 element is Sr
Therefore,
Option B is correct ✔
5) Group 13 element lose three electron in order to achieve Noble gas configuration.
And here Group 13 element is Al
Therefore,
Option B is correct ✔
6) For a given arrangements of ions, the lattice energy increases as ionic radius <u>decreases</u> and as ionic charge <u>increases</u>.
Therefore,
Option A is correct ✔
The volume of O₂ produced: 84.6 L
<h3>Further explanation</h3>
Given
7.93 mol of dinitrogen pentoxide
T = 48 + 273 = 321 K
P = 125 kPa = 1,23365 atm
Required
Volume of O₂
Solution
Decomposition reaction of dinitrogen pentoxide
2N₂O₅(g)→4NO₂(g)+O₂ (g)
From the equation, mol ratio N₂O₅ : O₂ = 2 : 1, so mol O₂ :
= 0.5 x mol N₂O₅
= 0.5 x 7.93
= 3.965 moles
The volume of O₂ :

Answer:
dark coloured rock with coarse grains in parallel layers
Explanation:
An igneous rock is defined by how the rock is formed; igneous rocks are formed by the solidification of molten rock materials. Examples of igneous rocks include Diorite, Gabbro, Granite, Pegmatite.
Answer:
The final temperature of the system is 42.46°C.
Explanation:
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
c = specific heat of water= 
= mass of water sample with 100 °C= 50.0 g
= mass of water sample with 13.7 °C= 100.0 g
= final temperature of system
= initial temperature of 50 g of water sample= 
= initial temperature of 100 g of water =
Now put all the given values in the given formula, we get


The final temperature of the system is 42.46°C.