Beta radiation - negative charge and the mass of an electron
Gamma radiation- no mass and no charge
Alpha radiation- He 4+/2
Answer:
Explanation:
(1) Homogeneous, (2) Heterogeneous (solid), (3) Heterogenized homogeneous catalyst and (4) Biocatalysts
<span>In order for an ionic compound to be created, there has to be a reaction between a metal and a non-metal. Having this in mind, the correct answer is A. strontium and chlorine. Strontium (Sr) is an alkaline earth metal, whereas chlorine (Cl) is a halogen gas, so a non-metal. There is no this type of a combination of metal + non-metal in other options, so only A is correct.</span>
Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Answer:
–187.9 J/K
Explanation:
The equation that relates the three quantities is:

where
is the Gibbs free energy
is the change in enthalpy of the reaction
T is the absolute temperature
is the change in entropy
In this reaction we have:
ΔS = –187.9 J/K
ΔH = –198.4 kJ = -198,400 J
T = 297.0 K
So the Gibbs free energy is

However, here we are asked to say what is the entropy of the reaction, which is therefore
ΔS = –187.9 J/K