You start by using proportions to find the number of liters of solution:
180 g of glucose / 1 liter of solution = 18 g of glucose / x liter of solution
=> x = 18 g of glucose * 1 liter of solution / 180 g of glucose = 0.1 liter of solution.
If you assume that the 18 grams of glucose does not apport volume to the solution but that the volume of the solution is the same volumen of water added (which is the best assumption you can do given that you do not know the how much the 18 g of glucose affect the volume of the solution) then you should add 0.1 liter of water.
Answer: 0.1 liter of water.
Answer:
The catalyzed reaction will take 2.85 seconds to occur.
Explanation:
The activation energy of a reaction is given by:

For the reaction without catalyst we have:
(1)
And for the reaction with the catalyst:
(2)
Assuming that frequency factor (A) and the temperature (T) are constant, by dividing equation (1) with equation (2) we have:

Since the reaction rate is related to the time as follow:
![k = \frac{\Delta [R]}{t}](https://tex.z-dn.net/?f=%20k%20%3D%20%5Cfrac%7B%5CDelta%20%5BR%5D%7D%7Bt%7D%20)
And assuming that the initial concentrations ([R]) are the same, we have:
![\frac{k_{1}}{k_{2}} = \frac{\Delta [R]/t_{1}}{\Delta [R]/t_{2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bk_%7B1%7D%7D%7Bk_%7B2%7D%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BR%5D%2Ft_%7B1%7D%7D%7B%5CDelta%20%5BR%5D%2Ft_%7B2%7D%7D%20)


Therefore, the catalyzed reaction will take 2.85 seconds to occur.
I hope it helps you!
Answer:
Resolution is the ability to distinguish two objects from each other. Light microscopy has limits to both its resolution and its magnification.
When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹