A scientist would most likely need to update her model when it no longer supports the latest results.
Answer:
308 moles of sodium
Explanation:
The balanced equation for the chemical reaction between sodium metal (Na) and water (H₂O) is the following:
2 Na(s) + 2 H₂O → 2 NaOH(aq) + H₂(g)
From the equation, we can see that 2 moles of Na react with 2 moles of H₂O to give 2 moles of NaOH and 1 mol of H₂ (hydrogen gas). So the stoichiometric mole ratio between Na and H₂ is: 2 mol Na/1 mol H₂. Thus, we multiply the mole ratio by the moles of H₂ to be produced to obtain the moles of Na required:
moles of Na required = 2 mol Na/1 mol H₂ x 154 moles H₂ = 308 moles Na
Therefore, 308 moles of sodium are needed to produce 154 moles of hydrogen gas.
wait I have an wuestion is that high school work
Answer:
a)If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.
b)If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.
c)If concentration of
is changed to 0.0001 M than rate will be increased by the factor of 0.01.
d) If concentration when [sucrose] and
both are changed to 0.1 M than rate will be increased by the factor of 1.
Explanation:
Sucrose +
fructose+ glucose
The rate law of the reaction is given as:
![R=k[H^+][sucrose]](https://tex.z-dn.net/?f=R%3Dk%5BH%5E%2B%5D%5Bsucrose%5D)
![[H^+]=0.01M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01M)
[sucrose]= 1.0 M
..[1]
a)
The rate of the reaction when [Sucrose] is changed to 2.5 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.01 M][2.5 M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.01%20M%5D%5B2.5%20M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.
b)
The rate of the reaction when [Sucrose] is changed to 0.5 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.01 M][0.5 M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.01%20M%5D%5B0.5%20M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.
c)
The rate of the reaction when
is changed to 0.001 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.0001 M][1.0M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.0001%20M%5D%5B1.0M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration of
is changed to 0.0001 M than rate will be increased by the factor of 0.01.
d)
The rate of the reaction when [sucrose] and
both are changed to 0.1 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.1M][0.1M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.1M%5D%5B0.1M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration when [sucrose] and
both are changed to 0.1 M than rate will be increased by the factor of 1.
Answer:
francium
Explanation:
the atomic radius increases from top to bottom in a group, and decreases from left to right across a period.