The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9
Answer:
Tetrahedral
Explanation:
For the repulsion of the free electron pair theory, the shape of a molecule will be to repel the bonds and the free electrons on the central atom. In a molecule of carbon tetrachloride, the central atom (C) has no free electrons, so, the shape that repels better the charge is tetrahedral, as shown below.
If 1mol ------- is ----------- 6,02×10²³
so x ------- is ----------- 1,39×10²⁴
Answer:
Approximately 100 °C.
Explanation:
Hello,
In this case, since the entropy of vaporization is computed in terms of the heat of vaporization and the temperature as:

We can solve for the temperature as follows:

Thus, with the proper units, we obtain:

Hence, answer is approximately 100 °C.
Best regards.