Answer:
a) the common difference is 20
b) 
c) the common difference is -13
d) 
Step-by-step explanation:
a) what is the common difference of the sequence xn
Looking at the table, we get x_3=16, x_4=36 and x_5= 56
Deterring the common difference by subtracting x_4 from x_3 we get
36-16 =20
So, the common difference is 20
b) what is x_8? what is x_12
The formula used is: 
We know common difference d= 20, we need to find 
Using
we can find 

So, We have 
Now finding 

So, 
Now finding 

So, 
c) what is the common difference of the sequence 
Looking at the table, we get a_7=104, a_8=91 and a_9= 78
Deterring the common difference by subtracting a_7 from a_8 we get
91-104 =-13
So, the common difference is -13
d) what is a_12? what is a_15?
The formula used is: 
We know common difference d= -13, we need to find 
Using
we can find 

So, We have 
Now finding
, put n=12

So, 
Now finding
, put n=15

So, 
Step-by-step explanation:
472-120=352 sleep in a cabin
352÷8=44 cabins
The solutions to the questions are given below
a)
sample(n) word length sample mean
1 5,4,4,2 3.75
2 3,2,3,6 3.5
3 5,6,3,3 4.25
b)R =0.75
c)
- The mean of the sample means will tend to be a better estimate than a single sample mean.
- The closer the range of the sample means is to 0, the more confident they can be in their estimate.
<h3>What is the students are going to use the sample means to estimate the mean word length in the book.?</h3>
The table below shows sample means in the table.
sample(n) word length sample mean
1 5,4,4,2 3.75
2 3,2,3,6 3.5
3 5,6,3,3 4.25
b)
Generally, the equation for is mathematically given as
variation in the sample means
R =maximum -minimum
R=4.25-3.5
R =0.75
c)
In conclusion, In most cases, the mean of many samples will provide a more accurate estimate than the mean of a single sample.
They may have a higher level of confidence in their estimate if the range of the sample means is closer to 0 than it is now.
Read more about probability
brainly.com/question/795909
#SPJ1