According to Charles' Law the volume of an ideal gas is directly proportional to its absolute temperature in Kelvin keeping the pressure constant.
V∝ T, P is constant
where V, T and P are volume, temperature and pressure
= 
where V₁, T₁, V₂ and T₂ are initial volume, initial temperature, final volume and final temperature.
Answer:
Explanation:
The chemical equation is:
There are several definitions of acid and bases: Arrhenius', Bronsted-Lowry's and Lewis'.
Bronsted-Lowry model defines and <em>acid</em> as a donor of protons, H⁺.
In the given equation HNO₃ is such substance: it releases an donates its hdyrogen to form the H₃O⁺ ion.
On the other hand, a <em>base</em> is a substance that accepts protons.
In the reaction shown, H₂O accepts the proton from HNO₃ to form H₃O⁺.
Thus, H₂O is a base.
In turn, on the reactant sides the substances can be classified as acids or bases.
H₃O⁺ contain an hydrogen that can be donated and form H₂O; thus, it is an acid (the conjugated acid), and NO₃⁻ can accept a proton to form HNO₃; thus it is a base (the conjugated base).
The answer is 9.03 × 10²⁴<span> molecules.
</span><span>Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance.
Make the proportion.
</span><span>6.02 × 10²³ molecules per 1 mol
</span>x per 15 mol
6.02 × 10²³ molecules : 1 mol = x : 15 mol
x = 6.02 × 10²³ molecules * 15 mol * 1 mol
x = 90.3 × 10²³ molecules
x = 9.03 × 10 × 10²³ molecules
x = 9.03 × 10²³⁺¹ molecules
x = 9.03 × 10²⁴ molecules
Answer:
Ionic bond is the electrostatic attraction among the positive and negative ions.
Explanation:
It forms when the valance electrons (electrons in the outer shell) of one atom are transferred to another atom.